能源系统可细分为相互连接的结构层次,每个层次的边界条件和目标都不同。对于热电生产,这些层次可能是:电价区(区域);热价区(城市);和生产基地(发电厂)。本文提出了一种多系统建模方法,用于分析热电联产 (CHP) 电厂的投资和运营,并在区域、城市或生产基地能源系统层面进行优化。该建模框架包含三个各自层次的能源系统优化模型,应用于瑞典电价区 SE3 的案例研究。建模层次分别进行优化,但通过电价和热价联系起来。结果表明,根据条件的不同,三个层次上优化的热电联产电厂投资和运营既可以一致,也可以不同。在生物质价格低且输往城市的输电能力中等拥堵的情况下,三个层次的结果通常是一致的。如果生物质价格上涨,就会出现差异,影响该地区热电联产厂的竞争力,而城市级热电联产投资主要由当地热能需求决定,对外部变化不太敏感。这些差异表明系统级别之间预期存在分歧的风险。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可证开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
A. 特斯拉总体规划第三部分 2023 年初,特斯拉提出了总体规划第三部分——通过终端使用电气化和可持续电力生产与储存,为世界实现可持续能源经济提出的一条途径。 完整的论文概述了假设、来源和计算,可以在这里找到:www.tesla.com/ns videos/Tesla-Master-Plan-Part-3.pdf 建模基于美国能源经济,使用美国能源信息署 (EIA) 提供的 2019-2022c 年高保真数据,并根据国际能源署能源平衡表 1,使用基于 2019 年美国和世界之间的能源消耗标量的 6 倍缩放系数对结果进行缩放,以估计全球经济所需的行动。 由于可以获得高保真每小时数据,因此对美国进行了此项分析,但我们打算将其复制到其他地区。与本调查相关的是,特斯拉总体规划考虑了所有可用的技术,即:陆上和海上风能、太阳能、核能和水力发电作为可持续的电力来源,并认为现有的生物质是可持续的,尽管随着时间的推移,它可能会逐渐被淘汰。此外,除了合成燃料发电所需的直接空气捕获外,该计划没有解决过去一个世纪化石燃料燃烧排放的二氧化碳的封存问题;指出未来任何此类技术的实施都可能增加全球能源需求。该模型基于资源特定的成本和性能属性以及最小化能源平准化成本的全球目标来构建发电和存储。该模型还假设区域间输电能力增加。值得注意的是,正如许多其他研究证实的那样,为了提供可靠的全年电力,部署过剩的太阳能和风能发电能力在经济上是最优的,这会导致弃电。当 (1) 太阳能和/或风能发电量高于某个地区的电力需求、(2) 存储已满以及 (3) 没有可用的输电能力将过剩发电量输送到其他地区时,就会发生弃电。在建设过剩的可再生能源发电能力、建设电网存储或扩大输电能力之间存在经济权衡。随着电网存储技术的成熟,这种权衡可能会发生变化,但根据建模假设,最佳发电和存储组合导致 32% 的削减。可持续能源经济将拥有大量廉价能源供消费者在过剩时期使用,这将影响能源的使用方式和时间。下图 1 描绘了秋季样本中的每小时调度,显示了每种发电和存储资源在平衡供需方面的作用,以及在太阳能充足的中午经济削减的集中程度。我们向委员会强调了调度图底部的条形图,该条形图显示了核电站的持续但较小的贡献。图 1:每小时发电调度模型 - 核电站作为较小的基载贡献
秀丽隐杆线虫是一种用于研究发育和衰老遗传学的多功能模型生物,通过给线虫喂养表达特定 dsRNA 的细菌可以抑制其基因表达。之前已证实通过常规转基因技术过表达缺氧诱导因子 1 ( hif-1 ) 或热休克因子 1 ( hsf-1 ) 可延长线虫寿命。然而,目前尚不清楚其他基因过表达方法是否可行,尤其是随着基于 CRISPR 的技术的出现。本文中,我们表明,给经过基因改造以稳定表达 Cas9 衍生的合成转录因子的秀丽隐杆线虫喂养表达启动子特异性单向导 RNA (sgRNA) 的细菌也可以激活基因表达。我们证明,通过摄取针对 hif-1 或 hsf-1 各自启动子区域的 sgRNA 激活 CRISPR 可增加基因表达并延长秀丽隐杆线虫的寿命。此外,作为旨在使用 CRISPR 激活秀丽隐杆线虫的未来研究的计算机资源,我们提供了预测的启动子特异性 sgRNA 靶序列,用于超过 13,000 个秀丽隐杆线虫基因,并具有实验定义的转录起始位点。我们预计本文描述的方法和组件将有助于促进全基因组基因过表达研究,例如,通过将表达 sgRNA 的细菌喂给线虫来诱导转录,以识别衰老或其他感兴趣的表型的调节因子。
1.1. 功能单元 本文件代表了经认证的环境产品声明 (EPD),该声明适用于位于欧洲场景中并在高风速条件下运行的陆上风电场的 SG 5.0-132 风力涡轮发电机。西门子歌美飒致力于风力涡轮机的设计和制造,以及风电场最终产品的安装调试和维护。因此,该公司充分了解其产品的整个生命周期。 所有结果均参考的功能单元是: 总参考流量为 3,704,084.783 MWh,用于将系统的所有输入和输出参考为 1 kWh。该参考流量代表 8 台 SG 5.0-132 WTG 在高风速条件下在其使用寿命期间(已设定为 20 年)预计的全部净发电量。西门子歌美飒能够提供不同类型的塔架,以寻求转子在高度的正确位置,从而优化所收集的能量。基准情景包括 84 米高的塔。随着不可再生传统能源资源的可预见枯竭,风能是满足不断增长的电力需求 1 的最可靠、最有效的可再生能源。此外,风能还是竞争力的保证,因为在大多数国家,风能是降低能源价格的因素。尽管风能与其他可再生能源具有共同的特点 - 避免二氧化碳排放,是一种取之不尽的资源,并降低了各国的能源脆弱性 - 但其工业特性和成熟度,加上发达的技术学习曲线,使其能够实现非常有竞争力的市场价格。风能将成为转变全球电力供应结构走向真正可持续能源未来的主导技术,该技术基于本土、无污染和有竞争力的可再生技术。
对于具有局部平移不变哈密顿量的任意空间维度的量子自旋系统,我们证明,如果状态是平移不变和空间遍历的,则通过热力学可行的一类量子动力学(称为热操作)从一个量子态到另一个量子态的渐近状态转换完全可以用 Kullback-Leibler (KL) 发散率来表征。我们的证明由两部分组成,用量子信息论的一个分支资源理论来表述。首先,我们证明,任何状态,对于这些状态,最小和最大 Rényi 发散度近似地坍缩为一个值,都可以在小的量子相干源的帮助下通过热操作近似可逆地相互转换。其次,我们证明,对于任何平移不变的遍历状态,这些发散度渐近地坍缩为 KL 发散率。我们通过对量子 Stein 引理的推广来证明这一点,该引理适用于独立同分布 (iid) 情况以外的量子假设检验。我们的结果表明,KL 发散率可作为热力学势,在热力学极限下,包括非平衡和完全量子情况,提供量子多体系统遍历态热力学可转换性的完整表征。
摘要 生物技术可能有助于解决食品安全和保障挑战。然而,基因技术一直受到公众的严格审查,与媒体和公众话语的框架有关。这项研究旨在调查人们对食品生物技术的看法和接受程度,重点是转基因遗传修饰与基因组编辑。进行了一项在线实验,参与者来自英国(n = 490)和瑞士(n = 505)。向参与者展示了食品生物技术的主题,更具体地说,展示了转基因和遗传修饰以及基因组编辑的实验性变化片段(科学不确定性:高与低,媒体形式:新闻与用户生成的博客)。结果表明,与转基因遗传修饰相比,这两个国家的参与者对基因组编辑的接受程度更高。这些技术的普遍和个人接受度在很大程度上取决于参与者是否认为该应用有益、他们如何看待科学的不确定性以及他们所居住的国家。我们的研究结果表明,未来关于基因技术的交流应该更多地侧重于讨论使用农业技术与有形相关利益之间的权衡,而不是单方面关注风险和安全。
用于控制番茄尼科亚A. Orobanche的创新遗传方法A.1,Cuccurullo A.1,Contaldi F. 1,Navarro Garcia A. 1,盛宴G. 1,Camerlengo F. 2,D'Agostino N. 3,Facchiano A. 4,Scafuri B. 4,Rigano M. 3,Vurro M. 5,Cardi T. 1 Alessandro.nicolia@crea.gov.it 1农业研究委员会和农业经济分析(园艺研究中心和Florovivaismo)(Florovivaismo) - Pontecagnano的总部,通过Pontecagnano,Via Cavalleggeri,25 -84098 -84098 -pontecag Tuscia (Agricultural and Forestry Department, via San Camill De Lellis, 01100 Viterbo - VT) 3 University of Naples Federico II (Agricultural Department, via University, 100 - Portici - Na) 4 National Research Council (Institute of Food Sciences, via Roma 64, 83100 Avellino - AV) 5 National Research Council (Institute of Food Production Sciences, via Giovanni Amendola, 122/o,70126 Bari -ba)是属于类型Orobanche spp的植物。 和Phelipanche spp。 它们代表着地中海盆地地区各种农作物的严重风险,亚洲和欧洲的某些地区。 <进入意大利,番茄的种植,尤其是在空旷的地方,可能会受到P. ramosa物种的传播,这会造成严重的经济损害。 农艺管理技术通常不足以控制这些寄生植物,这些寄生植物在地面上执行大部分周期,并且可以以种子的形式生存多年。1,Contaldi F. 1,Navarro Garcia A.1,盛宴G. 1,Camerlengo F. 2,D'Agostino N. 3,Facchiano A. 4,Scafuri B. 4,Rigano M. 3,Vurro M. 5,Cardi T. 1 Alessandro.nicolia@crea.gov.it 1农业研究委员会和农业经济分析(园艺研究中心和Florovivaismo)(Florovivaismo) - Pontecagnano的总部,通过Pontecagnano,Via Cavalleggeri,25 -84098 -84098 -pontecag Tuscia (Agricultural and Forestry Department, via San Camill De Lellis, 01100 Viterbo - VT) 3 University of Naples Federico II (Agricultural Department, via University, 100 - Portici - Na) 4 National Research Council (Institute of Food Sciences, via Roma 64, 83100 Avellino - AV) 5 National Research Council (Institute of Food Production Sciences, via Giovanni Amendola, 122/o,70126 Bari -ba)是属于类型Orobanche spp的植物。 和Phelipanche spp。 它们代表着地中海盆地地区各种农作物的严重风险,亚洲和欧洲的某些地区。 <进入意大利,番茄的种植,尤其是在空旷的地方,可能会受到P. ramosa物种的传播,这会造成严重的经济损害。 农艺管理技术通常不足以控制这些寄生植物,这些寄生植物在地面上执行大部分周期,并且可以以种子的形式生存多年。4,Scafuri B.4,Rigano M. 3,Vurro M. 5,Cardi T. 1 Alessandro.nicolia@crea.gov.it 1农业研究委员会和农业经济分析(园艺研究中心和Florovivaismo)(Florovivaismo) - Pontecagnano的总部,通过Pontecagnano,Via Cavalleggeri,25 -84098 -84098 -pontecag Tuscia (Agricultural and Forestry Department, via San Camill De Lellis, 01100 Viterbo - VT) 3 University of Naples Federico II (Agricultural Department, via University, 100 - Portici - Na) 4 National Research Council (Institute of Food Sciences, via Roma 64, 83100 Avellino - AV) 5 National Research Council (Institute of Food Production Sciences, via Giovanni Amendola, 122/o,70126 Bari -ba)是属于类型Orobanche spp的植物。和Phelipanche spp。它们代表着地中海盆地地区各种农作物的严重风险,亚洲和欧洲的某些地区。<进入意大利,番茄的种植,尤其是在空旷的地方,可能会受到P. ramosa物种的传播,这会造成严重的经济损害。农艺管理技术通常不足以控制这些寄生植物,这些寄生植物在地面上执行大部分周期,并且可以以种子的形式生存多年。是一种基于最先进的辅助进化技术(基因组编辑)和使用探针线的多样化遗传方法,又是基于使用凹线的使用。主要基因的主要基因的突变体(D27,CCD7,CCD8和MAX1),在自由基渗出液中发出的分子,负责土壤中种子植物种子种子在土壤中的膜,是通过与Cristpr的基因组编辑产生的。然而,由于植物中不必要的表型作用而导致的strigolattoni的生物合成阻塞(例如设置,尺寸降低),因此诱变CRISPR/CAS9的行为也针对负责其在自由基渗出液中运输的基因(SLPDR1和SLPDR2)。鉴于番红花中众所周知的刺激性线(ILS)的可用性,已经开始进行筛查,以突出染色体区域,该染色体区域随后使用耐药性用于构成适用于固定材料的sub-Sub-SubBub-Sublhe,这可能构成适合预生物学和研究的固定材料。<分为关键字:番茄,基因组编辑,Orobanche,Int Skull线,Strigolattoni。