髓磷脂代表一片修饰的质膜,包裹在轴突周围,在启用周围和中枢神经系统中快速神经脉冲传导方面具有至关重要的作用,并为轴突提供营养和代谢的支持。它也是多发性硬化症中免疫系统的主要目标(Fletcher等,2018)。几项研究表明,通过TRKB激活,BDNF对髓鞘化过程的影响(Fletcher等,2018)。即,提出的机制是,BDNF/ TRKB信号传导实际上是激活有丝分裂原激活的蛋白激酶/ ERK途径的级联反应,作为最终结果,它促进了前呈淡黄色的少突胶质细胞和髓鞘形成的差异化,这既有少突胶质细胞和内在含量。使用了TRKB受体的小分子激活剂而不是BDNF时,已经报道了相同的结果(Fletcher等,2018)。由于TRKB受体位于少突胶质细胞上,因此表明,在脱髓鞘病变之后,该受体可以积极调节髓磷脂的表达并引起再生(Huang等,2020)。最近的研究还报道说,在创伤性脑损伤后保持髓磷脂完整性至关重要(Fletcher等,2021)。的确,在施用TRKB受体激活剂LM22A-4对遭受创伤性脑损伤的小鼠后,保留了髓磷脂完整性后,可以预防皮质萎缩,同时减少神经胶质病(Fletcher等人,2021年)。这些研究表明,在赔偿受损的髓磷脂时,TRKB受体可能是引起人们关注的目标,尤其是如果我们考虑到这是多发性硬化症中的主要事件之一。
髓磷脂代表一片修饰的质膜,包裹在轴突周围,在使神经脉冲传导中既有至关重要,在外周和中枢神经系统中都具有至关重要的作用,并为轴突提供了营养和代谢的支持。它也是多发性硬化症中免疫系统的主要目标(Fletcher等,2018)。几项研究表明,通过TRKB激活,BDNF对髓鞘化过程的影响(Fletcher等,2018)。即,提出的机制是,BDNF/ TRKB信号传导实际上是激活有丝分裂原激活的蛋白激酶/ ERK途径的级联反应,作为最终结果,它促进了前呈淡黄色的少突胶质细胞和髓鞘形成的差异化,这既有少突胶质细胞和内在含量。使用了TRKB受体的小分子激活剂而不是BDNF时,已经报道了相同的结果(Fletcher等,2018)。由于TRKB受体位于少突胶质细胞上,因此表明,在脱髓鞘病变之后,该受体可以积极调节髓磷脂的表达并引起再生(Huang等,2020)。最近的研究还报道说,在创伤性脑损伤后保持髓磷脂完整性至关重要(Fletcher等,2021)。的确,在施用TRKB受体激活剂LM22A-4对遭受创伤性脑损伤的小鼠后,保留了髓磷脂完整性后,可以预防皮质萎缩,同时减少神经胶质病(Fletcher等人,2021年)。这些研究表明,在赔偿受损的髓磷脂时,TRKB受体可能是引起人们关注的目标,尤其是如果我们考虑到这是多发性硬化症中的主要事件之一。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
通过可植入的设备对CSF-SINK治疗策略进行了研究。虽然这种疗法的发展仍处于临床前16阶段,但与传统药物输送途径相比,它具有有希望的优势。在本文中,我们描述了该17系统的基本原理基础,并提供了有关作用机理的技术报告,该报告依赖于使用纳米方膜的使用,从而可以选择性18分子渗透性。在一侧,膜不允许穿越某些药物;鉴于,在另一侧,他们允许在CSF中跨越目标分子。靶分子通过在系统内的结合药物被保留或裂解20个,然后从中枢神经系统中消除。最后,我们提供了潜在指示,分子分子靶标和拟议的治疗剂的列表。22
长期的载人太空探索任务需要环境控制和封闭式生命支持系统 (LSS),该系统能够生产和回收资源,从而满足人类在恶劣的太空环境中生存的所有基本代谢需求,无论是在旅行期间还是在轨道/行星站。随着任务距离地球越来越远,这将变得越来越必要,从而限制了从地球补给资源的技术和经济可行性。需要将生物元素进一步融入最先进的(主要是非生物的)LSS,从而形成生物再生 LSS (BLSS),以实现额外的资源回收、食品生产和废物处理解决方案,并使前往月球和火星的任务更加自给自足。有一整套功能对于维持人类在低地球轨道 (LEO) 的存在以及在月球或火星上成功定居至关重要,例如环境控制、空气再生、废物管理、供水、食品生产、舱室/栖息地增压、辐射防护、能源供应以及交通、通信和娱乐手段。在本文中,我们重点关注空气、水和食品生产以及废物管理,并讨论辐射防护和娱乐的一些方面。我们简要讨论了现有知识,强调了尚未解决的差距,并提出了短期、中期和长期内可能进行的未来实验,以实现载人航天探索的目标,同时也可能给地球带来好处。
TDP-43蛋白质病是由TDP-43蛋白质的病理细胞质聚集的特征的神经退行性疾病(NDDS)。这些包括肌萎缩性侧索硬化症(ALS),额颞叶变性(FTLD),阿尔茨海默氏病(AD),慢性创伤性脑病(CTE)等。TDP-43在眼中显示出作为这些NDD的生物标志物的希望。 使用免疫组织化学,几项研究鉴定了具有ALS,FTLD,AD,CTE和其他条件的供体的视网膜层中的细胞质TDP-43包含物。 我们的发现表明,人类视网膜中TDP-43的病理聚集体在FTLD-TDP,ALS和CTE中最为普遍,这表明这些疾病可能为研究TDP-43作为视网膜生物标志物的潜力提供了最可靠的背景。 动物模型研究在探索TDP-43在视网膜中的作用方面一直是关键的,包括其核和细胞质定位,RNA结合特性以及与其他蛋白质的相互作用。 尽管有这些进展,但仍需要更多的研究来制定治疗策略。 人类尸检研究的主要局限性是缺乏相应的脑病理评估来确认TDP-43蛋白质病诊断和分期。 其他局限性包括小样本量,缺乏原质子眼病理学和临床历史以及多个NDD的比较有限。 TDP-43作为NDD的视网膜生物标志物的未来方向包括视网膜示踪剂,高光谱成像,动眼和机器学习开发。TDP-43在眼中显示出作为这些NDD的生物标志物的希望。使用免疫组织化学,几项研究鉴定了具有ALS,FTLD,AD,CTE和其他条件的供体的视网膜层中的细胞质TDP-43包含物。我们的发现表明,人类视网膜中TDP-43的病理聚集体在FTLD-TDP,ALS和CTE中最为普遍,这表明这些疾病可能为研究TDP-43作为视网膜生物标志物的潜力提供了最可靠的背景。动物模型研究在探索TDP-43在视网膜中的作用方面一直是关键的,包括其核和细胞质定位,RNA结合特性以及与其他蛋白质的相互作用。尽管有这些进展,但仍需要更多的研究来制定治疗策略。人类尸检研究的主要局限性是缺乏相应的脑病理评估来确认TDP-43蛋白质病诊断和分期。其他局限性包括小样本量,缺乏原质子眼病理学和临床历史以及多个NDD的比较有限。TDP-43作为NDD的视网膜生物标志物的未来方向包括视网膜示踪剂,高光谱成像,动眼和机器学习开发。
TDP-43蛋白质病是由TDP-43蛋白质的病理细胞质聚集的特征的神经退行性疾病(NDDS)。这些包括肌萎缩性侧索硬化症(ALS),额颞叶变性(FTLD),阿尔茨海默氏病(AD),慢性创伤性脑病(CTE)等。TDP-43在眼中显示出作为这些NDD的生物标志物的希望。 使用免疫组织化学,几项研究鉴定了具有ALS,FTLD,AD,CTE和其他条件的供体的视网膜层中的细胞质TDP-43包含物。 我们的发现表明,人类视网膜中TDP-43的病理聚集体在FTLD-TDP,ALS和CTE中最为普遍,这表明这些疾病可能为研究TDP-43作为视网膜生物标志物的潜力提供了最可靠的背景。 动物模型研究在探索TDP-43在视网膜中的作用方面一直是关键的,包括其核和细胞质定位,RNA结合特性以及与其他蛋白质的相互作用。 尽管有这些进展,但仍需要更多的研究来制定治疗策略。 人类尸检研究的主要局限性是缺乏相应的脑病理评估来确认TDP-43蛋白质病诊断和分期。 其他局限性包括小样本量,缺乏原质子眼病理学和临床历史以及多个NDD的比较有限。 TDP-43作为NDD的视网膜生物标志物的未来方向包括视网膜示踪剂,高光谱成像,动眼和机器学习开发。TDP-43在眼中显示出作为这些NDD的生物标志物的希望。使用免疫组织化学,几项研究鉴定了具有ALS,FTLD,AD,CTE和其他条件的供体的视网膜层中的细胞质TDP-43包含物。我们的发现表明,人类视网膜中TDP-43的病理聚集体在FTLD-TDP,ALS和CTE中最为普遍,这表明这些疾病可能为研究TDP-43作为视网膜生物标志物的潜力提供了最可靠的背景。动物模型研究在探索TDP-43在视网膜中的作用方面一直是关键的,包括其核和细胞质定位,RNA结合特性以及与其他蛋白质的相互作用。尽管有这些进展,但仍需要更多的研究来制定治疗策略。人类尸检研究的主要局限性是缺乏相应的脑病理评估来确认TDP-43蛋白质病诊断和分期。其他局限性包括小样本量,缺乏原质子眼病理学和临床历史以及多个NDD的比较有限。TDP-43作为NDD的视网膜生物标志物的未来方向包括视网膜示踪剂,高光谱成像,动眼和机器学习开发。
这篇综述从2015年至2024年以英语发表的文章进行了系统分析,重点介绍了用于皮肤再生和复兴的再生医学方法。使用PubMed,Scopus和Web of Science数据库进行了搜索。关键词包括“皮肤再生”,“皮肤再生”,“再生医学”和特定治疗方式的组合(例如,“干细胞疗法”,“富含血小板的血浆”,“外泌体”)。研究将包括与指定主题相关的原始研究或全面评论,包括研究。排除标准包括未在英语中发表的研究,仅专注于没有人类相关性的动物模型的研究,以及那些不符合最低方法学质量标准的研究,例如缺乏足够的控制,小样本量。
在过去的十年中,生成人工智能(GAI)的应用在医学,科学和日常生活中迅速增加。大语言模型(LLMS)为教育开辟了新的途径。llms已用于为学生创建互动的教育内容,刺激他们的好奇心,产生代码解释并提出评估问题(Küchemann等,2023)。但是,将GAI纳入教育时也存在一些挑战。该研究主题旨在解决使用GAI工具来推进学生认知或更广泛的能力的问题,以及如何使教师和学生都可以认真地反映使用GAI工具而不是过分依赖他们。研究主题的重点是研究基于大型语言模型的GAI工具,例如Chatgpt进行学习和认知,以促进有关如何使用GAI工具来支持教师进行形成性评估,诊断学生的努力,实现新颖的认知活动和实现个人意见和个人注意的学生的批判性转移。本社论综合了该研究主题中14项研究的见解,这些研究研究了AI在高等教育中的各种影响,强调了接受,评估,绩效比较,技能发展,互动策略和认知建模的关键主题。
最近,基于条件分数的扩散模型在监督语音增强领域引起了人们的关注,从而产生了最新的性能。但是,这些方法在普遍到看不见的条件时可能会面临挑战。为了解决这个问题,我们引入了一种以无监督方式运行的替代方法,利用了扩散模型的生成力量。具体来说,在训练阶段,使用基于得分的扩散模型在短期傅立叶变换(STFT)域中学习了清晰的语音,从而使其无条件地从高斯噪声中产生干净的语音。然后,我们通过与语音信号推理的噪声模型相结合,开发了一种后验采样方法来增强语音的增强。通过迭代期望最大化(EM)方法同时学习噪声参数以及干净的语音估计。据我们所知,这是探索基于扩散的生成模型的第一部作品,用于无监督语音增强,与最近的变异自动编码器(VAE)基于无监督的方法和一种最先进的基于扩散的基于扩散的超级访问方法相比,这表明了有希望的恢复。因此,它在无监督的语音增强中为未来的研究打开了一个新的方向。