记录的版本:此预印本的一个版本于2021年8月6日在自然通讯上发布。请参阅https://doi.org/10.1038/s41467-021-25043-2。
免责声明:洛斯阿拉莫斯国家实验室是一家采取平权行动/提供平等机会的雇主,由 Triad National Security, LLC 为美国能源部国家核安全局运营,合同编号为 89233218CNA000001。通过批准本文,出版商承认美国政府保留非独占、免版税的许可,可以出于美国政府目的出版或复制本文的已发表形式,或允许他人这样做。洛斯阿拉莫斯国家实验室要求出版商将本文注明为在美国能源部的支持下完成的工作。洛斯阿拉莫斯国家实验室坚决支持学术自由和研究人员的发表权利;但是,作为一个机构,实验室并不认可出版物的观点,也不保证其技术上的正确性。
摘要:在物联网和人工智能的时代,高度的轻巧和灵活的自充电系统具有同步能量收集和能量存储,这是高度满足的,可以为无效,分布式和低功率可耐磨性电子机构提供稳定,可持续性和自主的电源。然而,缺乏关于基于摩擦电纳米生成器(TENG)的最新作品的综合审查和挑战性的讨论,这些基于基于的自动充电功率纺织品,这很有可能成为未来的能源自主能力来源。在此,从纺织结构设计的方面全面总结了自动充电纺织品杂交纤维/织物型tengs和纤维/织物形状电池/超级电容器的杂交。基于当前的研究状况,最终还讨论了关键的瓶颈和更明亮的自我充电功率纺织品的前景。希望自我充电电源纺织品的最新研究的摘要和研究可以帮助相关的研究人员准确掌握研究的进度,专注于关键的科学和技术问题,并促进进一步的研究和实际应用程序。
早期的核心创新是为柴油发动机冷启动和排放而开发的独特小型催化反应器,后来根据国防部小企业创新研究 (SBIR) 进行了改造,以改善燃烧并重整燃料电池的馏分燃料(如 JP-8)。在开发这些衍生应用的过程中,Precision 团队在小企业创新研究 (SBIR) 的支持下创造了另一项新技术——使用柴油运行汽油发动机的增强技术——该技术已发展成为目前士兵使用的轻型排发电发电机组。然后,PCI 再次将该技术发展为氢增强组件,以提高汽车和卡车汽油发动机的效率和排放,目前正在开发用于分布式氢气供应的氢气生成技术。
摘要 目的——本文旨在分析决策支持系统如何管理大数据以获取价值。 设计/方法/方法——进行了系统的文献综述,筛选并分析了 2012 年至 2019 年期间发表的 72 篇文章。 发现——研究结果表明,决策支持系统主要使用与计算机科学和云计算相关的大数据分析、机器学习算法和技术。另一个发现是,这些技术和技术的主要应用领域是物流、交通、健康、商业和市场。本文还让作者了解了描述性、预测性和规范性分析的使用关系,根据数据分析的复杂性和人类决策的需要之间的反比关系。 原创性/价值——由于这是一个新兴主题,本研究旨在概述文献中正在讨论的技术和技术,以解决各自领域的问题,作为一种理论贡献。作者还认识到,讨论的成熟度具有实际贡献,甚至提出了反思作为未来研究的建议,例如伦理讨论。本研究的描述性分类还可以作为寻求了解涉及决策支持系统和大数据的研究的新研究人员的指南,以获得价值
摘要。燃气螺旋和气活塞发电机组(GS)广泛用于分布式生成(DG)设施。国际GS制造商以缩小可接受范围(AR)的方式配置继电器保护(RP)并导致正确运行的RPS实现不必要的断开连接。已经表明,当携带DG设施的微电网岛岛并发生功率不平衡时,会观察到最严重的干扰。当电动机分组开始时;当GS的95%的产出时;当3相短路发生在一个岛的网格段中时。储能单元(ESU)是解决许多动力工程问题的最新且非常成功的解决方案。此处的作者已经开发了一种方法,该方法可以独立控制ESU的主动和反应性,以避免不必要的GS断开连接,否则这将是由于频率短期偏差而引起的;这将有助于可靠地向岛屿微电网的使用者传递电力。仿真结果表明,ESU的使用有助于有效扩展生成器集的可接受范围。有关于向ES提取技术要求的建议。提出的ESU功率控制方法的一个重要优点是,它不需要在线调整ES接收控制动作(CA)以进行频率偏差。
摘要:全球安装的风力涡轮机的累计容量不断增加,证明了人们对风能的兴趣日益浓厚。本文介绍了一种风能转换系统的实验研究,该系统使用一种非常特殊的交流发电机,不同于双馈感应发电机 (DFIG) 或永磁同步发电机 (PMSG)。我们推荐的发电机类似于倒置安装的电励磁同步发电机 (EESG)。它配备了一个多极电感定子,由直流电供电,还有一个环形转子,通过该转子将产生的替代电能分配到公用电网。将相对较低的直流电选择性地注入多极定子,可以在发电机的端子上产生用户所需的电压。这种绕线转子替代发电机 (WRAG) 以同步模式运行。此外,结合转子侧的电力电子接口 (PEI) 转换器,WRAG 可以在低风速范围内将产生的电压调整到公用电网的频率,而无需变速箱。在 3 kVA 机器上进行了实验验证,可以说它是 PMSG 和 DFIG 的中间解决方案,在偏远地区和农业农场具有更高的可靠性。
当前的微电网设计和评估忽略了组件的可靠性,从而导致了在岛时预测微电网性能的重大错误。现有关于混合微电网的生命周期成本研究(结合了光伏(PV),电池存储和网络紧急柴油发电机)也没有确定所有潜在的经济机会。通过依赖PV和电池,零售账单节省以及需求响应和批发市场收入来减少紧急柴油发电机的数量非常重要。本文提供了一种新的统计方法,该方法可以计算分布式能量可靠性和可变性对微电网性能的影响,以及对优化平台REOPT的新颖使用,以探索多种成本节省和收入流。我们研究了加利福尼亚,马里兰州和新墨西哥州微电网的影响,并表明混合微电网比仅柴油系统更具有弹性和成本效率的解决方案。在现实条件下,混合微电网在岛屿上可以提供更高的系统可靠性,并且在多个市场条件下的生命周期成本低于传统的基于柴油发电机的系统。混合系统的性能提高对过去20年中太阳辐照度所经历的状况有弹性,并且在飓风过后,绩效几乎没有降解。与仅柴油的微电网相比,可节省的成本可提供更弹性的备用电源系统。新墨西哥州混合微电网的净现在成本比仅柴油微电网低19%,而马里兰州的净成本却低35%。在加利福尼亚州,混合微电网的净现在成本为负,因为与仅柴油微电网不同,混合微电网的生命周期成本低于没有微电网的电力成本。
生物相容性和可生物降解的能量收集器对于生物医学应用具有重要意义,它是一种不会对人体造成不良影响的替代能源。具有良好压电、介电和机械性能的内在生物相容性的二苯丙氨酸肽是很有前途的能量转换材料。在此,我们报道了一种可降解的压电纳米发电机 (PENG),它基于嵌入二苯丙氨酸微棒阵列的独立聚乳酸薄膜。坚硬的聚乳酸聚合物可以从刚性硅基底上去除坚硬的微棒,并将外力均匀地传递给它们以进行能量转换。PENG 产生的最大输出电压为 1.78 V,功率密度为 1.56 W m − 3 。此外,该装置在 60 ℃ 下放置 25 天后在碱性溶液、酸性溶液和磷酸盐缓冲盐水溶液中完全溶解。可降解的 PENG 为给瞬态电子设备供电并减少设备对环境的影响提供了一种可行的解决方案。
结果和讨论的底层纳米生成剂通过触发电气和静电诱导产生电力。接触电气是指在接触中的两个不同序列之间的电子转移,因为原子是如此近。在摩擦电气化后产生一个电子场,电静电诱导是由电场引起的。teng的电荷流如图1所示。当两种摩擦材料相互接触时,表面会产生不同的电荷。分离时,上表面电极的感应电子将流到下表面电极,形成电流流。当两个摩擦式配置接近时,下表面上的电极的电子将流回到上表面的电极,形成向下的电流,直到两个扭矩电力材料相互接触。