Triboelectric纳米生成器(Tengs)是多功能电子设备,用于环境能量收集和具有广泛潜在应用的自动性电子设备。Tengs的快速发展对传统电子设备的环境影响引起了极大的关注。在这种情况下,研究电子中合成和有毒物质的替代方法具有重要意义。在这篇综述中,我们专注于基于天然多糖材料的Tengs。首先,总结了和讨论了高性能tengs的工作机制和材料的一般概述。然后,回顾了2015年至2020年在文献中报告的基于多糖的tengs的最新进展以及其潜在的应用。在这里,我们的目的是将多糖聚合物作为绿色Tengs发展的有前途且可行的替代品,并应对回收电子垃圾的挑战。
然后,本文将使用多个阶段的涡轮机提出一个创新的冷冻冷却概念,该概念基于相同的工业涡轮增压器技术,可以在20-30 Kelvin温度范围内提供约1 kW的冷却能力(或在65 K时为5-6 kW),足以冷却10 mW的风力涡轮机。将来的其他版本可能在4 K处运行。它基于Air Liquide在成熟的反向涡轮增压涡轮增压 - 布雷顿制冷技术方面的丰富经验(从国际空间站,HTS地面应用于LNG船舶运营商)和大型科学工具(Cern-LHC,Iter,Iter,slac,slac等)。
多年来,用于健康监测的纳米生成器已经变得越来越有吸引力,因为它们提供了一种成本效益且连续的方式,可以成功地测量一个人周围/周围/周围/周围/周围的环境变化。使用此类传感器可以积极影响医护人员诊断和防止生命的状况的方式。最近,混合纳米生成剂(HBNG)的双重压电效应已成为研究主题,因为它们可以提供大量数据,这对于医疗保健非常重要。但是,在健康监测中对这些HBNG的现实利用仍然很小。本综述涵盖了压电三效性HBNG,用作传感器来测量人体的不同运动和变化,例如血液循环,呼吸和肌肉收缩。Piezo-Tribo双效应HBNG适用于各种医疗设置,作为为非侵入性传感器提供动力的一种手段,提供了持续的患者监测的能力而不会干扰用户的运动范围或舒适性。本评论还打算建议HBNG的未来改进。其中包括合并表面修饰技术,利用纳米线,纳米颗粒技术和其他化学表面修饰方式。这些改进可以在HBNG的电输出方面做出重大贡献,并且可以增强其在健康监测领域的应用前景,以及各种体外/体内生物医学应用。虽然是一个有希望的选择,但仍缺乏改进的HBNG。本评论还讨论了到目前为止阻止的技术问题,即这些传感器的真正使用。
摘要。高温超导体(HTS)非常有吸引力的高效和高能量密度功率设备。它们与需要轻型和紧凑型机器(例如风力发电)的应用特别相关。在这种情况下,为了确保超导器机器的正确设计及其在电力系统中的可靠操作,那么开发可以准确包含其物理功能但也可以正确描述其与系统的相互作用的模型很重要。为了实现这样一个目标,一种方法是共同模拟。这种数值技术可以通过有限元模型(FEM)带来机器的细几何和物理细节,同时处理整个系统的操作,该系统包含了机器,以及由外部电路代表的电网的子集。当前工作的目的是在涉及超导组件时使用这种数值技术。在这里,提出了一个案例研究,该案例研究涉及通过整流器及其相关滤波器与直流电流(DC)网络耦合到直流电流(DC)网络的15 MW杂交超导同步发电机(HTS转子和常规定子)。与风能应用有关的案例研究允许在使用与HTS机器的共同模拟时抓住技术问题。发电机的FEM是在商用软件COMSOL多物理学中完成的,该商品通过内置功能模拟单元(FMU)与电路模拟器Simulink进行交互。因此,它是在本研究中,引入了最新版本的最新版本J-与均化技术结合使用的配方,与T -A公式相比,计算时间更快。分布式变量和全局变量,例如前者和电压,电流,电磁扭矩以及后者的功率质量的电流密度,磁通量密度和局部损失,并进行了比较。这个想法是在计算速度,准确性和数值稳定性的标准下找到最适合的组合FEM电路。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
政府仅将森林衍生的木质生物量视为低碳能源,如果它符合某些可持续性条件,包括确保随着时间的推移将生物质源的森林生产力保持在维持。将制定增强的可持续性标准,以确保根据该计划支持的生物质符合这些条件。现有标准旨在减轻森林规模债务债务的风险和对这项咨询的回应中提出的固定,但我们认识到有必要评估当前的方法,以针对发展的证据基础进行评估。这将被视为生物质可持续性共同框架发展的一部分(问题12)。在问题10-12中描述了有关此支持机制增强可持续性要求的更多详细信息,包括与使用生物质使用的更广泛供应链排放有关的要求。
不同可再生能源技术的发展已显示出它们在限制环境危机和满足未来需求方面的能力。近年来,人们做出了许多努力来生产混合系统,这些系统致力于将可再生能源系统与热电发电机 (TEG) 相结合,以提高能源效率。这篇评论试图讨论和总结将 TEG 与不同的可再生能源 (太阳能、燃料电池、生物质) 混合的不同配置,这些配置是实现这些混合所用的概念和方法的基础。这篇评论将提供有关这种混合类型的必要信息,并因其有希望的结果而鼓励未来的研究。© 2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可开放获取的文章 ( http://creativecommons.org/licenses/by/4.0/ )。
抽象可穿戴的生物电子设备正在迅速发展到小型化和多功能性,具有弹性和舒适性等显着特征。但是,为可穿戴生物电子设备实现可持续的电源仍然是一个巨大的挑战。Triboelectric纳米生成剂(TENGS)通过将不规则的低频生物能源从人体转化为电能,从而提供了有效的解决方案。除了可持续的可穿戴生物电子药物外,收获的电能还提供了丰富的人体感测信息。在此转换过程中,材料的选择在影响tengs的输出性能中起着至关重要的作用。在各种材料中,有机硅橡胶(SR)由于其出色的可塑性,灵活性,舒适性和其他有利的特性而脱颖而出。此外,通过适当的治疗,SR可以实现极端功能,例如稳健性,良好的稳定性,自我修复能力,快速响应等等。在这篇综述中,系统地审查了基于可穿戴SR的Tengs(SR-Tengs)的最新进展,重点是他们在人体不同部位的应用。鉴于SR-Tengs的制造方法在很大程度上决定了其输出性能和敏感性,因此本文介绍了SR-Tengs的设计,包括材料选择,过程调制和结构优化。此外,本文讨论了当前
本文件:(a) 为 Baringa Partners LLP (“Baringa”) 专有,未经 Baringa 同意不得再用于商业目的;(b) 不构成任何合同的一部分,也不构成承诺或可接受的要约;(c) 排除所有条件和保证,无论是明示的还是法律或其他暗示的;(d) 对于本文件中的任何不准确、不完整或错误,Baringa 或其集团公司不承担任何责任;(e) 用户应自行承担依赖其内容的风险和责任。如果这些条款中的任何一项无效或不可执行,则不会影响其余条款的继续完全有效。版权所有 © Baringa Partners LLP 2024。保留所有权利。
