自计算机出现以来,人类一直在寻求富有表现力、直观且通用的计算机输入技术。虽然已经开发了多种模式,包括键盘、鼠标和触摸屏,但它们需要与中间设备进行交互,这可能会受到限制,尤其是在移动场景中。基于手势的系统利用摄像头或惯性传感器来避免使用中间设备,但它们往往只在不被遮挡或明显的动作中表现良好。几十年来,人们一直在设想脑机接口 (BCI),通过允许仅通过思维向计算机输入来解决接口问题。然而,高带宽通信仅使用为单个个体设计的解码器的侵入式 BCI 进行了演示,因此无法扩展到普通大众。相比之下,肌肉中的神经运动信号可以访问细微的手势和力量信息。在这里,我们描述了一种非侵入式神经运动接口的开发,该接口允许使用表面肌电图 (sEMG) 进行计算机输入。我们开发了一个高度灵敏且强大的硬件平台,该平台易于佩戴/脱下,可感知手腕上的肌电活动并将有意的神经运动命令转换为计算机输入。我们将此设备与一个经过优化的基础设施配对,该基础设施可从数千名同意的参与者那里收集训练数据,这使我们能够开发通用的 sEMG 神经网络解码模型,该模型适用于许多人,而无需对每个人进行校准。未包括在训练集中的测试用户在连续导航任务中以每秒 0.5 次目标获取、在离散手势任务中以每秒 0.9 次手势检测和每分钟 17.0 个调整字的速度展示手势解码的闭环中值性能。我们证明,通过为个人个性化 sEMG 解码模型,输入带宽可以进一步提高 30%,预计未来人类和机器将共同适应,提供无缝翻译人类意图的功能。据我们所知,这是第一个直接利用生物信号的高带宽神经运动接口,具有跨人群的高性能开箱即用泛化功能。
AC 交流电 AECB 原子能控制委员会 AECL 加拿大原子能有限公司 AFW 辅助给水 ALWR 先进轻水反应堆 ASDV 大气蒸汽排放阀 ASQ 事故序列量化 BFR 二项式故障率 BHEP 基本人为错误概率 BNSP 平衡核蒸汽厂 BOP 工厂平衡 BUE/F 电气总线(E 或 F) BWR 沸水反应堆 CAFTA 计算机辅助故障树分析 CANDU 加拿大氘铀 CC 组件类别 CCDP 条件堆芯损坏概率 CCF 常见原因故障 CCFP 条件安全壳故障概率 CCW 冷凝器循环水 CDFM 保守确定性故障裕度 CER 控制设备室 CFF 安全壳故障频率 CFR 美国联邦法规 CIGAR 反应堆通道检查和测量设备 CIS 安全壳隔离系统 CN 组件编号 CNSC 加拿大核安全委员会 COMPBRN IIIe 火灾计算机代码 CSA 加拿大标准协会 CSDV 冷凝器蒸汽排放阀 CT 排管 CV 排管容器 CVIS 安全壳通风隔离系统 DBE 设计基础 地震 DC 直流电 DCC 双控制计算机 DCS 分布式控制系统 DD 设计说明 DG 柴油发电机 DHC 延迟氢化物裂解
1964年《民权法》第六条规定:“在美国,任何人不得因种族、肤色或国籍而在任何获得联邦财政援助的项目或活动中被排除在外或被剥夺其应得的利益,或受到歧视。”1972年《教育修正案》第九条规定:“在美国,任何人不得因性别而在任何获得联邦财政援助的教育项目或活动中被排除在外或被剥夺其应得的利益,或受到歧视。”因此,国家职业教育研究中心项目和每个接受美国教育部财政援助的项目或活动一样,必须遵守这些法律进行运作。
信息融合的主要目标可以看作是利用信息的多样性来改善决策。信息融合的研究领域可以分为两个部分:低级信息融合和高级信息融合。迄今为止,大多数研究都涉及较低层次,例如信号处理和多传感器数据融合,而高级信息融合(例如实体聚类)则相对未知。高级信息融合旨在提供与情况相关的决策支持(人工或自动)。基于此类支持的决策的一个关键问题是信任,定义为“可接受的依赖性”,其中依赖性或可靠性是其他概念(例如可靠性)的总称。高级信息融合中的可靠性要求是指信念度量和与情况相关的假设的属性。尽管满足此类要求被认为是基于融合的决策中信任的先决条件,但解决此问题的高级信息融合研究却很少。由于高级信息融合的大部分研究都与国防应用有关,因此另一个重要问题是概括现有的术语、方法和算法,以便其他领域的研究人员更容易采用这些结果。本报告认为需要对这些问题进行更多研究,并提出了一系列未来研究的研究问题
4. Mair Lucy (1972). 社会人类学导论. 新德里: 牛津大学出版社 5. Malinowski Brownislow (). 魔法、科学与宗教. 6. Kroeber AL (1923). 人类学. 纽约: Harcourt, Brace。 7. Roy IndraniBasu (2003). 人类学——人的研究. 新德里: S.Chand& Company Ltd. 8. Scupin Raymond 和 DeCorse Christopher R. (). 人类学: 全球视角。 9. Sharma RN (). 社会与文化人类学. 德里: Surjeet Publications 10. Tylor EB (1871). 原始文化: 神话发展研究,
表 III:主要仪器类别概述.................................................................................................250 表 IV1:α 发射体...................................................................................................................253 表 IV2:β 发射体...................................................................................................................253 表 IV3:γ 发射体.........................................................................................................................254 表 IV4:Ge 能谱仪测量的光谱中的背景γ 线....................................................257 表 IV5:γ 线:按能量列出....................................................................................................258 表 IV6:γ 能谱测定中可能出现的干扰....................................................................262 表 IV7:不同核事故中释放的特征放射性核素....................................................................264 表 IV8:反应堆事故释放中的特征 γ 发射体.............................................................................265 表 VI:反应堆事故中的油.............................................................................................................267
确定量子通道的能力是量子信息理论中的一个基本问题。尽管对跨量子通道进行了严格的编码定理来量化信息流,但由于超级效应的影响,它们的能力很差。研究这些现象对于加深我们对量子信息的理解至关重要,但简单而干净的超添加通道的例子很少。在这里,我们研究了一个称为鸭嘴兽通道的渠道家族。它最简单的构件,一种QUTRIT通道,显示与各种量子信道共同使用时,可以显示相干信息的超添加性。高维家族成员以及擦除通道的超级增强性。受伴侣论文[1]中引入的“自旋分支猜想”的约束,我们对量子能力的超添加性的结果扩展到较低维通道以及较大的参数范围。特别是,超级添加性发生在两个弱添加通道之间,每个通道本身具有很大的容量,与先前的结果形成鲜明对比。值得注意的是,在所有示例中,一种新颖的传播策略都可以达到超级添加。我们的结果表明,超级促进性比以前想象的要普遍得多。即使两个参与通道具有较大的量子容量,也可以在各种渠道上发生。
第一章 ................................................................................................................................................ 7
•这些时间表不是任何通用公司的特定特定的;这些是MPP许可人共享的不同活动所需的时间表的平均值。•根据MPP的当前估计,最早的备案时间表为H2 2026。•由于与产品开发相关的不确定性,尤其是对于这种长效产品,此处引用的时间表是暂定的,可以在