方法:从基因表达综合数据库中获取 HFpEF 小鼠数据集(GSE180065,包含 10 个 HFpEF 和 5 个对照样本的心脏组织)。比较 HFpEF 组和对照组的基因表达谱,以识别差异表达的 EMRG(DE-EMRG),并使用机器学习算法筛选具有诊断价值的诊断生物标志物。同时,我们构建了基于生物标志物的列线图模型以评估其预测能力,并使用单基因集富集分析、药物预测和调控网络分析对诊断生物标志物的功能进行研究。此外,利用基于诊断生物标志物表达的共识聚类分析来识别差异 HFpEF 相关基因(HFpEF-RG)。对 HFpEF 和亚型进行免疫微环境分析,以分析免疫细胞与诊断生物标志物以及 HFpEF-RG 之间的相关性。最后,对HFpEF小鼠模型进行qRT-PCR分析,以验证诊断生物标志物的表达水平。
头颈癌 (HNC) 表现出显著的异质性,包括不同的细胞来源、解剖位置和病因因素,再加上普遍的晚期诊断,给临床管理带来了重大挑战。基因组测序工作揭示了调节细胞增殖和存活的关键信号通路的广泛改变。针对这些失调通路的疗法设计计划正在进行中,几种候选分子正在进入临床评估阶段,包括 FDA 批准的用于 K-RAS 野生型、EGFR 突变型 HNSCC 治疗的 EGFR 靶向单克隆抗体西妥昔单抗等药物。非编码 RNA (ncRNA) 由于其在生物体液中的稳定性增强以及在 HNC 环境中的细胞内和细胞间信号传导中的重要作用,现在被认为是疾病管理的有力生物标志物,可催化进一步完善的诊断和治疗策略,更接近个性化医疗的要求。预计,对 HNC 特有的基因组和免疫学特征的深入了解将有助于更严格地评估靶向疗法的利弊,优化其临床部署,并促进治疗方法的创新进步。本综述介绍了驱动头颈部恶性肿瘤发生发展的 HNC 分子机制和突变谱的最新情况,并探讨了它们对推进诊断方法和精准治疗的意义。
蛋白质后翻译修饰(PTMS)代表细胞调节的关键方面,在蛋白质合成mRNA后发生。这些修饰包括磷酸化,泛素化,乙酰化,甲基化,糖基化,糖基化,sumoylation和棕榈酰化,在调节蛋白质功能中起关键作用。PTM会影响蛋白质的定位,稳定性和相互作用,从而响应内部和外部刺激来策划各种细胞过程。失调与一系列疾病,例如癌症,炎症性疾病和神经退行性疾病有关。ufmylation是一种PTMS,最近因其在众多细胞过程中的调节作用而获得了突出的,包括蛋白质稳定性,对细胞应激的反应以及关键信号通路影响细胞功能。本评论强调了ufmylation在肿瘤发展和发展中的关键功能,强调了其作为治疗靶标的潜力。此外,我们讨论了ufmyration在肿瘤发生和恶性进展中的关键作用,并探索其对癌症免疫疗法的影响。本文旨在详细概述ufmylation的生物学功能,并提出靶向ufmylation如何增强癌症免疫疗法策略的有效性。
抽象造血是一个连续的过程,其中前体细胞在整个生命中都会增殖和分化。但是,控制这一过程的分子机械尚未明确定义。编码DNA结合同源域的含同源物基因是一个高度保守的基因网络。它们是在具有位置层次结构的发育胚胎中表达的簇中组织的。我们已经分析了四个人HOX基因座在红血病,叶虫细胞和单核细胞系中的表达,以研究人类HOX基因的物理组织是否反映了造血细胞分化过程中涉及的调节性层次结构。我们的结果表明,代表血液 - 诗分化的各个阶段的细胞显示出HOX基因表达的差异模式,并且HOX基因在可能包括整个基因座的块中协调或关闭。在分析的所有线路中,整个HOX4基因座都保持沉默,几乎所有HOX2基因在红血球细胞中都活跃,并在髓样限制的细胞中关闭。我们的观察结果提供了有关HOX基因调控的信息,并表明这些基因的坐标调节可能在血液早期阶段的谱系确定中起重要作用。
胚胎干细胞通过形成细菌层具有多能力的潜力和自我恢复能力,从而为胚胎发生提供了主要贡献。这些干细胞多能的保留取决于转录因子的表达/水平,即SOX2,OCT4和NANOG。在器官发生过程中,分子的表达变化也会影响这些干细胞失去多能性并转向谱系选择。随着分化的进展,包括口腔鳞状细胞在内的体细胞的维持也取决于转录因子的差异表达。最近,许多实验性和观察性研究记录了各种人类癌症的致癌作用的重要贡献。在这篇综述中,我们试图总结说明这些主要多能调节剂在口服癌变阶段的推定作用的证据,即口服鳞状细胞癌的起始,进展和预后。
摘要我们已经开发了一种无细胞的系统,用于研究哺乳动物细胞中mRNA的合成。该系统由透析和浓缩的全细胞提取物组成,从HeLa细胞,小分子和转录所需的辅助因子和外源添加DNA组成。RNA聚合酶II的准确介绍完全取决于添加含有启动子的真核DNA。在最佳DNA和提取浓度下,易于检测到来自腺病毒血清型2后期启动子的转录起始,并且可以使用超过4000个核苷酸的特定转录本。在体外合成的RNA包含与体内transkipt相同的5'限制RNase T1 Undeclepleotide。RNA合成还可以在早期和中间腺病毒启动子位点准确地启动。
摘要:顶复门寄生虫新孢子虫是全球范围内导致牛流产和死胎的主要原因。通过删除毒力基因 actA 、 inlA 和 inlB ,设计出减毒突变单核细胞增生李斯特菌菌株 (Lm3Dx),以避免全身感染并将载体靶向抗原呈递细胞 (APC)。插入编码新孢子虫主要表面蛋白 NcSAG1 的 sag1 ,产生疫苗菌株 Lm3Dx_NcSAG1。评估 Lm3Dx_NcSAG1 的有效性的方法是,将 1 × 10 5、1 × 10 6 或 1 × 10 7 CFU 的 Lm3Dx_NcSAG1 接种到雌性 BALB/c 小鼠体内,每隔两周进行三次肌肉注射,然后在怀孕第 7 天用 1 × 10 5 个高毒性 NcSpain-7 菌株的犬新孢子虫速殖子进行攻击。观察到剂量依赖性保护作用,用 1 × 10 7 CFU 的 Lm3Dx_NcSAG1 治疗的组的出生后后代存活率为 67%,而未接种疫苗的对照组的存活率为 5%。在安乐死时(产后 25 天),接受两个较高剂量的组的 IgG 抗体滴度显著降低,接种组的脾细胞培养上清液中的细胞因子回忆反应(IFN-γ、IL-4 和 IL-10)增加。因此,Lm3Dx_NcSAG1 在怀孕的新孢子虫病小鼠模型中诱导与平衡 Th1/Th2 反应相关的免疫保护作用,应在反刍动物模型中进一步评估。
本综述对巨噬细胞及其基本机制在糖尿病心肌病(DCM)进展中所起的关键作用进行了全面分析。它首先讨论巨噬细胞的起源和多种亚型,阐明了它们的空间分布和细胞间通信的模式,从而强调了它们在DCM发病机理中的显着性。审查然后深入研究了巨噬细胞与DCM发作之间的复杂关系,尤其是侧重于在DCM条件下巨噬细胞采用的表观遗传调节机制。此外,审查还讨论了旨在针对巨噬细胞管理DCM的各种治疗策略。特别强调了天然食品成分在减轻糖尿病微血管并发症中的潜力,并检查了现有降血糖药物对巨噬细胞活性的调节作用。这些发现,总结在这篇综述中,不仅提供了巨噬细胞在糖尿病微血管并发症中的作用的新见解,而且还为未来的治疗研究和该领域的干预提供了宝贵的指导。
透明细胞肾细胞癌 (ccRCC) 是肾细胞癌 (RCC) 的主要类型,常与冯·希佩尔·林道 (VHL) 基因的缺失或突变、糖脂代谢增强以及肿瘤微环境的异质性有关。RCC 细胞中的 VHL 改变导致缺氧诱导因子及其下游靶点血管内皮生长因子的激活,以及多种细胞死亡途径的重编程和代谢无力,包括铁死亡,这与靶向治疗或免疫治疗有关。生物代谢物 (如铁和脂质) 的变化支持铁死亡作为 RCC 的潜在治疗策略,而铁代谢和铁死亡调控已在许多研究中被作为抗 RCC 剂进行研究,并且各种铁死亡相关分子已被证明与 ccRCC 的转移和预后有关。例如,谷胱甘肽过氧化物酶4和谷氨酰胺酶抑制剂可以抑制嘧啶合成并增加VHL缺陷型RCC细胞中的活性氧水平。此外,经历铁死亡的肿瘤细胞释放的损伤相关分子模式也介导抗肿瘤免疫,免疫治疗可以通过铁死亡与靶向治疗或放疗产生协同作用。然而,诱导铁死亡不仅可以抑制癌症,而且由于其对抗癌免疫的潜在负面影响,还会促进癌症发展。因此,铁死亡和各种肿瘤微环境相关分子可能在RCC的发展和治疗过程中共同发生,进一步了解铁死亡的相互作用、核心靶点和相关药物可能为RCC治疗提供新的联合用药策略。本文我们总结了关于铁死亡和RCC的关键基因和化合物,以展望未来的治疗策略并为通过铁死亡克服RCC耐药性提供足够的信息。
Siglecs 是众所周知的癌症免疫治疗靶点。目前的检查点抑制剂疗效有限,因此需要针对 Siglec-15 等靶点的新型疗法。目前,针对 Siglec-15 的小分子抑制剂尚未与涉及 CRC 进展的 microRNA 的特征性调控机制一起进行探索。因此,体外阐明了针对 Siglec-15 的小分子抑制剂,并研究了 microRNA 介导的抑制剂作用。我们的研究结果表明,SHG-8 分子对细胞活力、迁移和菌落形成具有显着的细胞毒性,IC 50 值约为 20µM。SHG-8 暴露在体外诱导 SW480 CRC 细胞晚期凋亡。值得注意的是,miR-6715b-3p 是高通量测序中上调最多的 miRNA,这也通过 RT-qPCR 进行了验证。 MiR-6715b-3p 可能调节 PTTG1IP,这是一种潜在的致癌基因,已通过 RT-qPCR 和计算机模拟分析进行了验证。此外,分子对接研究显示 SHG-8 与 Siglec-15 结合口袋相互作用,结合亲和力为 -5.4 kcal/mol,突出了其作为小分子抑制剂的作用。重要的是,Siglec-15 和 PD-L1 在相互排斥的癌细胞群中表达,表明与 PD-L1 拮抗剂联合治疗的潜力。
