真核生物的基因组主要由散布的重复序列的各种家族组成,包括逆转录座子和可转移和内源性病毒元素。普遍的观点是,基因组重复体的多样家庭应被视为寄生虫或“垃圾DNA”(Bourque等,2018)。但是,可以遵循族谱树,或这些元素进化发展和分布的途径,因此,我们的理解应得到完全修订。重复元素在系统生物学和医学意义上扮演着角色,远远超出了“垃圾DNA”和病毒化石(Wells and Feschotte,2020年)。最近的研究越来越多地表明,基因组的基本成分,即使不是我们基因组的最基本成分,它具有病毒源,并且作为移动遗传介体的病毒在遗传进化中始终起着至关重要的作用(Cosby等,2019)。基因组的演变与克服和固定综合事件有关。随着每个重要的进化步骤,基因组中的移动遗传因素数量急剧增加。自从生活开始以来,就没有一个生物体没有所有这些不同的移动元素。在基因组的形成中,我们可以追踪涉及无数不同外观的移动元素的许多过程。基因组不是无数意外突变及其选择的最终产物,而是一种原始外部病毒感染的生活沉积物,这种矿床经常被回收,并且像编年史一样,重新解释(Vassilieff等,2023年)。为了完全发展,移动元素必须与他们的宿主基因组建立共同的关系(Gebrie,2023)。移动元件和宿主基因组的进化系统发育树显示强相关性(Kalendar等,2004; Kalendar等,2008; Moisy等,2014; Kalendar等,2020)。内源性逆转录病毒,也属于逆转录病毒,是单链
1 柑橘研究中心“Sylvio Moreira” – 农学研究所 (IAC),Cordeiro ´ polis,巴西,2 生物研究所,坎皮纳斯州立大学 (Unicamp),坎皮纳斯,巴西,3 甘蔗研究中心 – 农学研究所 (IAC),里贝朗普雷图,巴西,4 里贝朗普雷图医学院,圣保罗大学 (USP),里贝朗普雷图,巴西,5 坎皮纳斯农学研究所 (IAC) 咖啡中心,坎皮纳斯,巴西,6 Embrapa 咖啡,巴西农业研究公司,巴西利亚,联邦区,巴西,7 生物学系,哲学、科学与文学学院,圣保罗大学 (USP),里贝朗普雷图,巴西,8 遗传学系,路易斯·德·凯罗斯农业学院 (ESALQ),圣保罗大学 (USP),皮拉西卡巴,巴西
•拟议的更改不会影响现有的义务,包括现有的SNA-我们注意并支持以下立场:NPSIB中SNA规定的任何拟议修正案不会影响1991年《资源管理法》(包括现有的SNAS和生物多样性保护规则)所规定的现有义务。奥克兰理事会将继续根据奥克兰统一计划(部分手术室)进行运营和管理其现有的海洋规定。•奥克兰理事会致力于保护我们的土著生物多样性的现有战略和监管方向 - 保护我们的土著生物多样性的保护被嵌入奥克兰理事会的战略方向和监管条款中。存在保护我们的土著生物多样性的方向包括2050年奥克兰计划,奥克兰议会的土著生物多样性战略(2012),奥克兰水战略(2022)和tetāruke-āruke-āwhiri:奥克兰:奥克兰的气候计划(2020年)。这个方向通过奥克兰统一计划(部分操作员)以及奥克兰理事会的运营计划来补充并告知我们的监管条款。•当地政府目前正在确认2024 - 2034年的长期计划 - 这些拟议更改的时机对2024 - 2034年长期计划(LTPS)的准备,咨询和最终确定产生了重大影响。这是理事会为未来工作计划计划和确保预算的重要过程。奥克兰理事会的有限公司目前正在供公众咨询(3月28日关闭),并包括支持生物多样性计划的竞标。更新的海洋映射将需要参与此评论的一部分。地方政府需要大量的交货时间,以确保资金和资源可用来制定和支持工作计划以支持NPSIB的实施。•对奥克兰统一计划的审查产生影响 - 与上述点有关,奥克兰理事会正在进行工作,以准备审查奥克兰统一计划(《资源管理法案》所要求的10年审查需要在2026年开始)。奥克兰理事会已计划在2026年之前开始进行此次审查所需的实地调查。如果NPSIB根据NPSIB目前的识别标准发生重大变化,则根据NPSIB规定的SNA要求的时间将影响此现场工作。
摘要在过去的十年中从古代样品中获得的序列数据量大大扩展,因此现在可以使用古代DNA解决的问题类型。在人类历史领域,虽然古代DNA为有关人的主要运动的长期辩论提供了答案,但它最近也开始为人类经验的其他重要方面提供信息。该领域现在主要从主要固定大规模上区域研究转变为还采用更本地的观点,阐明了社会经济过程,遗产规则,婚姻实践和技术扩散。在这篇综述中,我们总结了最近的研究,展示了这些类型的见解,重点是用于推断人类行为的社会文化方面的方法。这通常涉及跨学科的工作,直到最近才发展为分离。我们认为,多学科对话对于对人类历史的更融合和更丰富的重建至关重要,因为它可以产生有关过去社会,生殖行为甚至生活方式习惯的非凡见解,而这些习惯也无法获得其他可能获得。引言近年来,考古学领域为古代迁移的时机和组成以及它们如何塑造当今的人类多样性1-3提供了新的启示。多亏了提取和测序古代DNA(ADNA)方法的爆炸性改进,可用的古代基因组的数量从十年前的不到5年就增加到了3,000多个。在世纪之交,ADNA提取技术的改进提高了前景生物信息学和种群遗传推断的进一步改善也有助于从这些基因组中提取宝贵的信息,包括人口增长和收缩的模式,远距离相关组之间的杂交以及在表型重要的基因座上运行的自然选择的证据4,5。古代DNA还为考古学上的长期辩论提供了信息,包括“ Demic” 6-8的作用与“文化”扩散9在技术传播中的作用。在1970年代和1980年代,分子研究和统计迁移模型的出现重点是人口运动作为技术扩张的驱动力,例如农业的传播10。相比之下,许多考古学家倾向于极大地减少如果不简单地否认过去迁移的存在和影响11。
农业创新对于扩大农作物的遗传多样性至关重要,专注于提高产量,对生物和非生物应力因素的耐受性营养价值以及对新环境的适应性,尤其是在响应气候变化方面。利用各种遗传资源,包括在包括局部陆地等基因库中维持的农场多样性和种质,以及次级基因库,也必须变得势在必行。传统品种,陆地和其他未充分利用的种系很少被育种者使用,主要是由于不必要的联系。基因组学工具可以有效地处理这一问题。例如,大米中的“ SD1基因与干旱耐受性QTL之间的遗传联系”是一个显着的繁殖挑战,最近通过标记辅助育种克服了。另一个例子是“ Cimmyt-发现的种子(种子)”计划,该计划使用基因组学工具来大量使用小麦种质库。先进的基因组学工具和技术通过知识丰富为制定育种计划的知识发展提供了有希望的途径。通过识别和融合新等位基因来整合未充分利用的遗传多样性和解锁遗传多样性,可以扩大培养品种的遗传基础。这种方法称为“基因组学辅助杂种”,包括多样性分析,功能基因组学和结构基因组学,以及用于作物改善所需的先进统计工具。拥抱“基因组辅助 - 预育”对于满足全球粮食,燃料和鱼的需求而言至关重要。
1 柑橘研究中心“Sylvio Moreira” - 农学研究所 (IAC),Cordeiro ´ polis,巴西,2 生物研究所,坎皮纳斯州立大学 (Unicamp),坎皮纳斯,巴西,3 甘蔗研究中心 - 农学研究所 (IAC),里贝朗普雷图,巴西,4 里贝朗普雷图医学院,圣保罗大学 (USP),里贝朗普雷图,巴西,5 坎皮纳斯农学研究所 (IAC) 咖啡中心,坎皮纳斯,巴西,6 Embrapa 咖啡,巴西农业研究公司,巴西利亚,联邦区,巴西,7 生物学系,哲学、科学与文学学院,圣保罗大学 (USP),里贝朗普雷图,巴西,8 遗传学系,路易斯·德·凯罗斯农业学院 (ESALQ),圣保罗大学 (USP),皮拉西卡巴,巴西
目前尚不清楚链格孢属植物产生的复杂霉菌毒素混合物在生理条件下是否具有雌激素作用和/或遗传毒性,特别是考虑到它与食品中的抗氧化剂同时存在。因此,本研究重点探讨了 N-乙酰半胱氨酸 (NAC) 作为代表性抗氧化 SH 供体对特征性链格孢毒素 alter-nariol (AOH)、altertoxin-II (ATX-II) 和链格孢培养物的复杂提取物 (CE) 上述毒理学终点的影响。以石川细胞为体外模型,我们通过 LC-MS/MS 监测毒素浓度的变化,通过碱性磷酸酶测定法监测雌激素性,通过磺酰罗丹明 B 测定法监测细胞毒性,通过单细胞凝胶电泳法监测遗传毒性,并通过定量实时 PCR 监测选定的目的基因的转录。结果表明,在 NAC 存在下,携带环氧化物的苝醌(如 ATX-II)的强烈遗传毒性作用被消除。ATX-II/AOH 混合物的细胞效应主要由苝醌的遗传毒性决定。在这种混合物中,当与 NAC 共培养时,AOH 恢复了其雌激素性。相反,用 NAC 处理 AOH/CE 混合物不会导致雌激素性恢复,但会增强抗雌激素作用。这些发现与基因转录数据一致,表明芳烃受体 (AhR) 是链格孢毒素诱导的对雌激素受体信号的拮抗作用的主要介质。综上所述,进一步研究非遗传毒性苝醌的潜在内分泌干扰特性应成为这些新兴污染物领域未来的研究重点。© 2022 作者。由 Elsevier BV 代表科爱传播有限公司提供出版服务。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/ 4.0/)。
目前,噬菌体的抗菌和治疗效果有限,主要是由于噬菌体抗性的快速出现以及大多数噬菌体分离株无法结合和感染多种临床菌株。在这里,我们讨论了如何通过基因工程的最新进展来改进噬菌体疗法。首先,我们概述了如何设计受体结合蛋白及其相关结构域以重定向噬菌体的特异性并避免抗性。接下来,我们总结了如何将噬菌体重新编程为原核基因治疗载体,以递送抗菌“有效载荷”蛋白(例如序列特异性核酸酶)以靶向复杂微生物群中的特定细胞。最后,我们描述了大数据和新型人工智能驱动的方法,这些方法可能会指导未来改进合成噬菌体的设计。