弧菌物种是海洋原核生物,居住在多种生态壁ches,定居非生物和生物表面。这些细菌是全球碳循环中的重要参与者,吸收了数十亿吨的碳(和氮)代谢物。对包括几丁质酶,糖转运蛋白和修饰酶的过程的许多细菌蛋白进行了很好的研究。然而,在存在几丁质的存在下,遗传功能相互作用和主要驱动因素是主要的碳源。为了解决这个问题,我们进行了转座子测序(TN-Seq),以确定在几丁质上生长在几丁质上作为唯一碳源的颤动性溶血性突变体的遗传适应性。以及验证与几丁质代谢相关的已知颤音基因,我们的数据新确定了未分类的OPRD样进口壳质蛋白和HEXR家族转录调节剂的重要作用。此外,我们在功能上暗示了HEXR在调节副溶血性环境生存的多个生理过程中,包括碳同化和细胞生长,生物膜形成和细胞运动。在营养限制条件下,我们的数据揭示了对丝状细胞形态中HEXR的要求,这是副溶血性环境适应性的关键特征。因此,由HEXR介导的重要进口孔蛋白和基因组调节支持多个生理过程,以实现弧菌念珠菌的生长和环境适应性。
Methods In this observational study, we prospectively performed short-read shotgun metagenomics analysis as a second-line test (in cases of negative first-line test or when the symptoms were not fully explained by initial positive results) or as a first-line test in life-threatening situations requiring urgent non-targeted pathogen identification at the Necker-Enfants Malades Hospital (Paris, France).包括所有样本类型,临床适应症和患者人群。样品伴随着由高级临床医生或病理学家填写的强制性表格,该临床临床水平的可疑感染(定义为高或低)。我们使用多元逻辑回归中的优势比(ORS)评估了与MNGS病原体检测相关的变量(性别,年龄,免疫状态,感染的初始怀疑,指示和样本类型)。使用特定的PCR或培养技术进行了其他研究,以确认MNGS的阳性结果,或者尽管MNG造成阴性,但传染性怀疑何时特别高。
脑源性神经营养因子(BDNF)基因的表观基因组修饰已被认为是神经发育,精神病和神经学条件的发病机理的基础。 这项系统评价总结了当前研究BDNF表观基因组修饰(DNA甲基化,非编码RNA,组蛋白修饰)与脑相关表型中的证据。 新颖的贡献是我们创建了开放访问Web的应用程序BDNF DNA甲基化图,以交互可视化在所有可用数据的研究中研究的CPG站点的特定位置。 直到2021年9月27日,我们对四个数据库的文献搜索返回了1,701篇文章,其中153篇符合纳入标准。 我们的审查显示方法学方法中的异质性异质,从而阻碍了稳定和/或复制结果的清晰模式的识别。 我们总结了关键发现,并为将来的表观基因组研究提供了建议。 现有文献似乎仍处于起步阶段,需要进行额外的严格研究,以满足其与大脑相关疾病相关的BDNF连接风险的潜力,并提高了我们对其发病机理背后的分子机制的理解。脑源性神经营养因子(BDNF)基因的表观基因组修饰已被认为是神经发育,精神病和神经学条件的发病机理的基础。这项系统评价总结了当前研究BDNF表观基因组修饰(DNA甲基化,非编码RNA,组蛋白修饰)与脑相关表型中的证据。新颖的贡献是我们创建了开放访问Web的应用程序BDNF DNA甲基化图,以交互可视化在所有可用数据的研究中研究的CPG站点的特定位置。直到2021年9月27日,我们对四个数据库的文献搜索返回了1,701篇文章,其中153篇符合纳入标准。我们的审查显示方法学方法中的异质性异质,从而阻碍了稳定和/或复制结果的清晰模式的识别。我们总结了关键发现,并为将来的表观基因组研究提供了建议。现有文献似乎仍处于起步阶段,需要进行额外的严格研究,以满足其与大脑相关疾病相关的BDNF连接风险的潜力,并提高了我们对其发病机理背后的分子机制的理解。
结果:FD201807基因组包括112,214 bp的双链DNA,G + C含量为53.53%。它包含130个潜在的开放式阅读框架,编码能力范围为41至1,293个氨基酸。对全基因组序列的系统发育分析表明,与FD201807相关的最接近的巨型细胞病毒是Pompano Iridovirus,其序列身份为98.98%。在病毒感染的细胞培养上清液中鉴定了27种病毒蛋白的无标记蛋白质组学分析,而FD201807的纯病毒病毒中的46种病毒蛋白。在这些病毒感染的细胞培养上清液和纯净的病毒样品中都检测到19种病毒蛋白,而在病毒感染的细胞培养上士中仅鉴定了8种病毒蛋白。值得注意的是,有两种蛋白质来自培养的细胞系MFF-1(普通话炸细胞系-1),即细胞色素c和泛素激活酶E1,它们都存在于纯化的病毒样品和受感染细胞的培养物中。这些细胞蛋白可能与病毒宿主蛋白相互作用和/或宿主细胞凋亡有关。
对肝细胞癌中关键致癌途径的比较基因组分析在不同人群中,M.D.,M.P.H.,F.A.C.P.1,Brigette Waldrup,B.S。 2,Francisco G. Carranza博士2和恩里克·韦拉斯克斯·维尔雷尔(Enrique Velazquez-Villarreal),医学博士,博士,M.P.H。 2,3 * 1贝塞斯达医学博士国家癌症研究所的癌症研究中心。 2希望城市,贝克曼研究所,综合翻译科学系,杜阿尔特,加利福尼亚州。 3希望之城综合癌症中心,加利福尼亚州杜阿尔特。 *通信:evelazquezvilla@coh.org摘要背景/目标:肝细胞癌(HCC)是癌症相关死亡率的主要原因,其发病率,肿瘤生物学和临床结果的种族和种族差异很大。 西班牙裔/拉丁裔(H/L)患者往往比非西班牙裔白人(NHW)患者诊断出年轻年龄的阶段,并且更高级阶段,但是这些差异的分子机制仍然很众所周知。 关键的致癌途径,包括RTK/RAS,TGF-BETA,WNT,PI3K和TP53,在肿瘤进展,治疗耐药性以及对靶向疗法的反应中起关键作用。 然而,这些途径内的民族特异性变化在很大程度上尚未得到探索。 本研究旨在比较H/L和NHW患者之间HCC中特定的途径特异性突变,评估肿瘤突变负担,并使用公开可用的数据集比较与种族相关的致癌驱动器。 此分析的发现可能会为改善代表性不足的人群的早期检测和靶向疗法提供精确的医学策略。1,Brigette Waldrup,B.S。2,Francisco G. Carranza博士2和恩里克·韦拉斯克斯·维尔雷尔(Enrique Velazquez-Villarreal),医学博士,博士,M.P.H。 2,3 * 1贝塞斯达医学博士国家癌症研究所的癌症研究中心。 2希望城市,贝克曼研究所,综合翻译科学系,杜阿尔特,加利福尼亚州。 3希望之城综合癌症中心,加利福尼亚州杜阿尔特。 *通信:evelazquezvilla@coh.org摘要背景/目标:肝细胞癌(HCC)是癌症相关死亡率的主要原因,其发病率,肿瘤生物学和临床结果的种族和种族差异很大。 西班牙裔/拉丁裔(H/L)患者往往比非西班牙裔白人(NHW)患者诊断出年轻年龄的阶段,并且更高级阶段,但是这些差异的分子机制仍然很众所周知。 关键的致癌途径,包括RTK/RAS,TGF-BETA,WNT,PI3K和TP53,在肿瘤进展,治疗耐药性以及对靶向疗法的反应中起关键作用。 然而,这些途径内的民族特异性变化在很大程度上尚未得到探索。 本研究旨在比较H/L和NHW患者之间HCC中特定的途径特异性突变,评估肿瘤突变负担,并使用公开可用的数据集比较与种族相关的致癌驱动器。 此分析的发现可能会为改善代表性不足的人群的早期检测和靶向疗法提供精确的医学策略。2,Francisco G. Carranza博士2和恩里克·韦拉斯克斯·维尔雷尔(Enrique Velazquez-Villarreal),医学博士,博士,M.P.H。2,3 * 1贝塞斯达医学博士国家癌症研究所的癌症研究中心。 2希望城市,贝克曼研究所,综合翻译科学系,杜阿尔特,加利福尼亚州。 3希望之城综合癌症中心,加利福尼亚州杜阿尔特。 *通信:evelazquezvilla@coh.org摘要背景/目标:肝细胞癌(HCC)是癌症相关死亡率的主要原因,其发病率,肿瘤生物学和临床结果的种族和种族差异很大。 西班牙裔/拉丁裔(H/L)患者往往比非西班牙裔白人(NHW)患者诊断出年轻年龄的阶段,并且更高级阶段,但是这些差异的分子机制仍然很众所周知。 关键的致癌途径,包括RTK/RAS,TGF-BETA,WNT,PI3K和TP53,在肿瘤进展,治疗耐药性以及对靶向疗法的反应中起关键作用。 然而,这些途径内的民族特异性变化在很大程度上尚未得到探索。 本研究旨在比较H/L和NHW患者之间HCC中特定的途径特异性突变,评估肿瘤突变负担,并使用公开可用的数据集比较与种族相关的致癌驱动器。 此分析的发现可能会为改善代表性不足的人群的早期检测和靶向疗法提供精确的医学策略。2,3 * 1贝塞斯达医学博士国家癌症研究所的癌症研究中心。2希望城市,贝克曼研究所,综合翻译科学系,杜阿尔特,加利福尼亚州。3希望之城综合癌症中心,加利福尼亚州杜阿尔特。*通信:evelazquezvilla@coh.org摘要背景/目标:肝细胞癌(HCC)是癌症相关死亡率的主要原因,其发病率,肿瘤生物学和临床结果的种族和种族差异很大。西班牙裔/拉丁裔(H/L)患者往往比非西班牙裔白人(NHW)患者诊断出年轻年龄的阶段,并且更高级阶段,但是这些差异的分子机制仍然很众所周知。关键的致癌途径,包括RTK/RAS,TGF-BETA,WNT,PI3K和TP53,在肿瘤进展,治疗耐药性以及对靶向疗法的反应中起关键作用。然而,这些途径内的民族特异性变化在很大程度上尚未得到探索。本研究旨在比较H/L和NHW患者之间HCC中特定的途径特异性突变,评估肿瘤突变负担,并使用公开可用的数据集比较与种族相关的致癌驱动器。此分析的发现可能会为改善代表性不足的人群的早期检测和靶向疗法提供精确的医学策略。方法:我们使用公开可用的HCC数据集进行了生物信息学分析,以评估RTK/RAS,TGF-BETA,WNT,PI3K和TP53途径基因中的突变频率。该研究包括547例患者,由69例H/L患者和478例NHW患者组成。通过种族(H/L与NHW)进行分层的患者,以评估突变患病率的差异。卡方检验用于比较突变频率,而Kaplan-Meier生存分析评估了与两个人群中途径特异性变化相关的总体生存差异。结果:与NHW患者相比,在RTK/RAS途径相关的基因中观察到显着差异,尤其是在FGFR4突变中,H/L患者更为普遍(4.3%vs. 0.6%,P = 0.02)。此外,IGF1R突变表现出边缘意义(7.2%vs. 2.9%,p = 0.07)。在PI3K途径中,H/L患者的INPP4B改变比NHW患者(4.3%vs. 1%,1%,P = 0.06)更频繁,而在TGF-BETA途径中,TGFBR2突变在H/L患者中更为普遍(2.9%vs. 0.4%vs. 0.4%,P = 0.07,P = 0.07),暗示了潜在的道理。
胰腺癌的胰腺癌特异性基因组改变,塞西莉亚·蒙格(Cecilia Monge),M.D.,M.P.H. 1,Brigette Waldrup,B.S。 2,Francisco G. Carranza博士2和恩里克·韦拉斯克斯·维尔雷尔(Enrique Velazquez-Villarreal),医学博士,博士,M.P.H。 2,3 * 1贝塞斯达医学博士国家癌症研究所的癌症研究中心。 2希望城市,贝克曼研究所,综合翻译科学系,杜阿尔特,加利福尼亚州。 3希望之城综合癌症中心,加利福尼亚州杜阿尔特。 *信件:evelazquezvilla@coh.org摘要背景/目标:胰腺癌(PC)是一种侵略性恶性肿瘤,发病率上升和存活率较差。 与非西班牙裔白人(NHW)患者相比,西班牙裔/拉丁裔(H/L)患者的总体发病率较低,但他们被诊断出年龄较小,经常出现更晚期疾病,并且经历更差的生存结果。 这些差异为基础的分子驱动因素仍然很少理解。 关键的致癌途径,包括TP53,WNT,PI3K,TGF-BETA和RTK/RAS,在肿瘤进展,耐药性和对靶向治疗的反应中起着至关重要的作用。 然而,他们在PC中的民族特定变化和预后含义在很大程度上尚未得到探索。 本研究旨在表征H/L和NHW患者PC中PC的特异性突变,评估肿瘤突变负担,并使用公开可用的数据集识别出种族 - 特异性致癌驱动因素。 这些发现可能会提供关键见解,以优化精确的医学策略并增强代理人群不足的靶向疗法。胰腺癌的胰腺癌特异性基因组改变,塞西莉亚·蒙格(Cecilia Monge),M.D.,M.P.H.1,Brigette Waldrup,B.S。 2,Francisco G. Carranza博士2和恩里克·韦拉斯克斯·维尔雷尔(Enrique Velazquez-Villarreal),医学博士,博士,M.P.H。 2,3 * 1贝塞斯达医学博士国家癌症研究所的癌症研究中心。 2希望城市,贝克曼研究所,综合翻译科学系,杜阿尔特,加利福尼亚州。 3希望之城综合癌症中心,加利福尼亚州杜阿尔特。 *信件:evelazquezvilla@coh.org摘要背景/目标:胰腺癌(PC)是一种侵略性恶性肿瘤,发病率上升和存活率较差。 与非西班牙裔白人(NHW)患者相比,西班牙裔/拉丁裔(H/L)患者的总体发病率较低,但他们被诊断出年龄较小,经常出现更晚期疾病,并且经历更差的生存结果。 这些差异为基础的分子驱动因素仍然很少理解。 关键的致癌途径,包括TP53,WNT,PI3K,TGF-BETA和RTK/RAS,在肿瘤进展,耐药性和对靶向治疗的反应中起着至关重要的作用。 然而,他们在PC中的民族特定变化和预后含义在很大程度上尚未得到探索。 本研究旨在表征H/L和NHW患者PC中PC的特异性突变,评估肿瘤突变负担,并使用公开可用的数据集识别出种族 - 特异性致癌驱动因素。 这些发现可能会提供关键见解,以优化精确的医学策略并增强代理人群不足的靶向疗法。1,Brigette Waldrup,B.S。2,Francisco G. Carranza博士2和恩里克·韦拉斯克斯·维尔雷尔(Enrique Velazquez-Villarreal),医学博士,博士,M.P.H。 2,3 * 1贝塞斯达医学博士国家癌症研究所的癌症研究中心。 2希望城市,贝克曼研究所,综合翻译科学系,杜阿尔特,加利福尼亚州。 3希望之城综合癌症中心,加利福尼亚州杜阿尔特。 *信件:evelazquezvilla@coh.org摘要背景/目标:胰腺癌(PC)是一种侵略性恶性肿瘤,发病率上升和存活率较差。 与非西班牙裔白人(NHW)患者相比,西班牙裔/拉丁裔(H/L)患者的总体发病率较低,但他们被诊断出年龄较小,经常出现更晚期疾病,并且经历更差的生存结果。 这些差异为基础的分子驱动因素仍然很少理解。 关键的致癌途径,包括TP53,WNT,PI3K,TGF-BETA和RTK/RAS,在肿瘤进展,耐药性和对靶向治疗的反应中起着至关重要的作用。 然而,他们在PC中的民族特定变化和预后含义在很大程度上尚未得到探索。 本研究旨在表征H/L和NHW患者PC中PC的特异性突变,评估肿瘤突变负担,并使用公开可用的数据集识别出种族 - 特异性致癌驱动因素。 这些发现可能会提供关键见解,以优化精确的医学策略并增强代理人群不足的靶向疗法。2,Francisco G. Carranza博士2和恩里克·韦拉斯克斯·维尔雷尔(Enrique Velazquez-Villarreal),医学博士,博士,M.P.H。2,3 * 1贝塞斯达医学博士国家癌症研究所的癌症研究中心。 2希望城市,贝克曼研究所,综合翻译科学系,杜阿尔特,加利福尼亚州。 3希望之城综合癌症中心,加利福尼亚州杜阿尔特。 *信件:evelazquezvilla@coh.org摘要背景/目标:胰腺癌(PC)是一种侵略性恶性肿瘤,发病率上升和存活率较差。 与非西班牙裔白人(NHW)患者相比,西班牙裔/拉丁裔(H/L)患者的总体发病率较低,但他们被诊断出年龄较小,经常出现更晚期疾病,并且经历更差的生存结果。 这些差异为基础的分子驱动因素仍然很少理解。 关键的致癌途径,包括TP53,WNT,PI3K,TGF-BETA和RTK/RAS,在肿瘤进展,耐药性和对靶向治疗的反应中起着至关重要的作用。 然而,他们在PC中的民族特定变化和预后含义在很大程度上尚未得到探索。 本研究旨在表征H/L和NHW患者PC中PC的特异性突变,评估肿瘤突变负担,并使用公开可用的数据集识别出种族 - 特异性致癌驱动因素。 这些发现可能会提供关键见解,以优化精确的医学策略并增强代理人群不足的靶向疗法。2,3 * 1贝塞斯达医学博士国家癌症研究所的癌症研究中心。2希望城市,贝克曼研究所,综合翻译科学系,杜阿尔特,加利福尼亚州。3希望之城综合癌症中心,加利福尼亚州杜阿尔特。*信件:evelazquezvilla@coh.org摘要背景/目标:胰腺癌(PC)是一种侵略性恶性肿瘤,发病率上升和存活率较差。与非西班牙裔白人(NHW)患者相比,西班牙裔/拉丁裔(H/L)患者的总体发病率较低,但他们被诊断出年龄较小,经常出现更晚期疾病,并且经历更差的生存结果。这些差异为基础的分子驱动因素仍然很少理解。关键的致癌途径,包括TP53,WNT,PI3K,TGF-BETA和RTK/RAS,在肿瘤进展,耐药性和对靶向治疗的反应中起着至关重要的作用。然而,他们在PC中的民族特定变化和预后含义在很大程度上尚未得到探索。本研究旨在表征H/L和NHW患者PC中PC的特异性突变,评估肿瘤突变负担,并使用公开可用的数据集识别出种族 - 特异性致癌驱动因素。这些发现可能会提供关键见解,以优化精确的医学策略并增强代理人群不足的靶向疗法。方法:使用公开可用的PC数据集进行了生物信息学分析,以评估与TGF-BETA,RTK/RAS,WNT,PI3K和TP53途径相关的基因中的突变频率。该研究包括4,248例患者,407例H/L,3,841例NHW。患者按种族分层,以评估突变患病率的差异。卡方检验以比较组之间的突变率,而Kaplan-Meier生存分析进行了基于途径特异性变化的总体生存差异。结果:在H/L和NHW患者之间的TGF-β途径中观察到显着差异。TGF-β突变在H/L患者中的普遍性较小(18.4%比24.4%,p = 8.6E-3)。此外,与TGF-β途径相关的基因显示出显着改变,SMAD2(1.5%vs. 0.4%,P = 6.3e-3)和SMAD4(15%vs. 19.9%,P = 0.02)表现出显着差异。Although RTK/RAS, WNT, PI3K, and TP53 pathway mutations were not statistically significant overall, borderline significance was observed in genes associated with these pathways, including ERBB4 (3.4% vs. 1.8%, p = 0.03), ALK (2.7% vs. 1.1%, p = 0.01), HRAS (1.2% vs. 0.1%, p = 1.3e-4), and RTK/RAS途径中的RIT1(0.7%vs. 0.1%,p = 0.03)以及CTNNB1(2.9%vs. 1.3%,p = 0.01)
图2:与替代性DSB测序技术相比,诱导seq表现出无与伦比的灵敏度和动态范围。(a)诱导seq同时检测高度复发的诱导DSB和低级内源性DSB,并以高分辨率。基因组浏览器视图(IgV)诱导seq读取映射到HEK293T细胞的10MB部分,随后与限制性核酸内核酸内切酶Hindiii进行原位裂解。(顶部面板)高度复发性酶诱导的断裂表示在低分辨率(10MB,0-1000读物)时的绝大多数读数。(底部面板)高分辨率视图(粉红色的亮点,500kb,0-20读取)显示出未处理样品中存在的低水平的单源性断裂,以及在复发性印度诱导的突破(绿色亮点)中。(b)诱导seq读取的映射在Hindiii目标位点显示了断裂两侧的单核苷酸断裂映射的精度。(c)对经过治疗和对照样品的每个细胞测量的断裂定量。诱导seq在样品之间的3个数量级上定量检测到每个细胞的断裂。(d和e)通过酶Hindiii和ecorv检测体外裂解限制位点时诱导seq和dsbapture之间的比较。(d)使用诱导seq映射到测序和对齐基因组的读取和对齐基因组的比例更大。(e)使用少800倍的细胞,诱导seq鉴定了与DSBCAPTURE确定的ECORV(93.7%)相似的Hindiii限制位点(92.7%)。(f)使用诱导seq的诱导DSB检测的动态范围。除了在印度内目标序列(AAGCTT)上鉴定出的断裂外,还确定了多个1BP和2BP不匹配靶向位点。诱导seq测得的诱导的休息事件,跨越了8个数量级,从在印度内靶标地点确定的约1.5亿次断裂到最少频繁的脱离目标的5个断裂。(g)在检测ASISI诱导的活细胞中诱导的疾病,DSBCAPTURE和BLISS之间的比较。将测序的读取数(顶部面板)与每个实验(底部面板)识别的ASISI位点的数量进行了比较。诱导seq使用比DSBCAPTUE少的40倍读数检测到最大数量的ASISI位点,而读取的读数比Bliss少23倍。
机载微生物群落虽然经常因生物量低而挑战研究,但在公共卫生和病原体传播中起着至关重要的作用。通过shot弹枪宏基因组学,这项研究利用面罩和飞机舱滤清器的非侵入性空气采样来研究具有频繁人类相互作用的环境中的微生物多样性,包括医院和飞机。开发了全面的抽样和分析工作流程,并结合了环境和富集方案,以增强微生物DNA恢复和多样性分析。尽管存在生物量的局限性,但允许成功鉴定407种的优化提取方法,其中包括cutibacterium痤疮,表皮葡萄球菌,hankookensis和Radiotolerans甲基杆菌。富集加工导致更大的元基因组组装基因组(MAG)恢复和较高的抗菌耐药基因(ARG)鉴定。这些发现突出了高占用公共场所中ARG的存在,这表明监测的重要性以及在这种环境中减轻空气传播风险的潜力。这项研究证明了将环境和富集采样相结合以捕获狭窄空间中综合微生物和ARG概况的实用性,从而为在公共卫生环境中增强病原体监测提供了框架。
香蕉基因组中心为基因组组件,注释以及可用于香蕉和香蕉亲属的广泛相关的OMICS提供了集中访问。实施了一系列工具和独特的接口,以利用香蕉中的基因组学潜力,利用比较分析的力量,同时认识到数据集之间的差异。除了BLAST和JBROWSE基因组浏览器等有效的基因组工具外,其他接口还可以使高级基因搜索和基因家族分析(包括多种比对和系统发育)。同步观察者可以比较染色体规模组件之间的基因组结构。接口。跨越香蕉多样性的变体目录可用于探索,过滤和导出到各种软件。此外,我们实施了新的方法来以图形方式探索pangenomes中的基因存在 - 以及基因组血统的培养香蕉。此外,为了指导社区以后的测序工作,我们为基因座标签的命名法提供了建议,并提供了精心策划的公共基因组资源列表(集会,重新陈述,高密度基因分型)和即将到来的资源(即将到来的资源)(计划,持续或持续的公众。香蕉基因组中心旨在支持基础,翻译和应用研究的香蕉科学界,并可以在https://banaana-genome-hub.southgreen.fr上访问。
1瑞士伯尔尼大学伯恩大学医院Inselspital的血液学和中央血液学实验室系,瑞士伯尔尼; ioannis.chanias@insel.ch(i.c. ); kristina.stojkov@insel.ch(K.S. ); Michael.daskalakis@insel.ch(M.D. ); helena.simeunovic@insel.ch(H.S. ); linetmuthoni.njue@insel.ch(l.m.n。 ); annatina.schnegg@insel.ch(A.S.S.-K。); naomiazur.porret@insel.ch(N.A.P。 ); allam.ramanjaneyulu@dbmr.unibe.ch(R.A.); tata.nageswararao@dbmr.unibe.ch(T.N.R. ); alicia.rovo@insel.ch(A.R. ); veraulrike.bacher@insel.ch(U.B.) 2伯尔尼大学生物医学研究系(DBMR),瑞士伯尔尼大学3010,瑞士伯尔尼3诊所,巴塞尔大学医院,瑞士4031,瑞士巴塞尔大学; gregorthomas.stehle@usb.ch 4血液学和肿瘤学系,医院Thurgau AG,8596 Muensterlingen,瑞士; rudolf.benz@stgag.ch.CH 5血液学和中央血液学实验室,瑞士卢塞恩6004号卢塞恩医院; axel.ruefer@luks.ch 6 6内科医学诊所,医学肿瘤学和血液学诊所,WAID和Triemli,瑞士8063,瑞士苏黎世; adrian.schmidt@triemli.zuerich.CH 7瑞士Thun 3600 Thun医院医学肿瘤学和血液学中心; marcel.adler@spitalstsag.ch.CH 8苏黎世大学苏黎世大学医院医学和血液学系,瑞士8091苏黎世; stefan.balabanov@usz.ch 9瑞士南瑞士肿瘤学研究所血液学诊所,瑞士贝林佐纳6500; georg.stuessi@eoc.ch *通信:nicolas.bonadies@insel.ch;电话。 : +41-(0)31-632-4571;传真: +41-(0)31-632-34061瑞士伯尔尼大学伯恩大学医院Inselspital的血液学和中央血液学实验室系,瑞士伯尔尼; ioannis.chanias@insel.ch(i.c.); kristina.stojkov@insel.ch(K.S.); Michael.daskalakis@insel.ch(M.D.); helena.simeunovic@insel.ch(H.S.); linetmuthoni.njue@insel.ch(l.m.n。); annatina.schnegg@insel.ch(A.S.S.-K。); naomiazur.porret@insel.ch(N.A.P。); allam.ramanjaneyulu@dbmr.unibe.ch(R.A.); tata.nageswararao@dbmr.unibe.ch(T.N.R.); alicia.rovo@insel.ch(A.R.); veraulrike.bacher@insel.ch(U.B.)2伯尔尼大学生物医学研究系(DBMR),瑞士伯尔尼大学3010,瑞士伯尔尼3诊所,巴塞尔大学医院,瑞士4031,瑞士巴塞尔大学; gregorthomas.stehle@usb.ch 4血液学和肿瘤学系,医院Thurgau AG,8596 Muensterlingen,瑞士; rudolf.benz@stgag.ch.CH 5血液学和中央血液学实验室,瑞士卢塞恩6004号卢塞恩医院; axel.ruefer@luks.ch 6 6内科医学诊所,医学肿瘤学和血液学诊所,WAID和Triemli,瑞士8063,瑞士苏黎世; adrian.schmidt@triemli.zuerich.CH 7瑞士Thun 3600 Thun医院医学肿瘤学和血液学中心; marcel.adler@spitalstsag.ch.CH 8苏黎世大学苏黎世大学医院医学和血液学系,瑞士8091苏黎世; stefan.balabanov@usz.ch 9瑞士南瑞士肿瘤学研究所血液学诊所,瑞士贝林佐纳6500; georg.stuessi@eoc.ch *通信:nicolas.bonadies@insel.ch;电话。: +41-(0)31-632-4571;传真: +41-(0)31-632-3406