宏基因组测序是一种最近可行的方法,可以同时表征样品中的ARG,微生物组和病原体的数据,与分离和培养细菌相比,它是一种更有效,更全面的方法。对宏基因组数据的典型分析涉及一种基于组装的方法或基于读取的方法,每种方法都有其自身的好处和限制。宏基因组装配允许对ARGS进行上游或下游研究,并提供对其起源的准确识别。但是,这种方法可能导致信息丢失,因为低覆盖的基因组通常不会组装。相比之下,基于读取的方法可实现所有可用数据的映射,但缺乏探索周围基因组环境或提供准确分类分类的能力。为了应对这些挑战,我们开发了Balrog-mon,这是一种多功能且可重现的NextFlow管道,用于测量病原体和元基因组长阅读测序的ARG,提供“组装”和“无装配”工作流程选项。
预备课程 无 任何先决条件 遗传学和分子生物学基础知识 教育目标 学生必须能够独立探索从其他文本或科学文章中学到的概念。他/她必须能够通过培养批判能力来连接和整合课程的各个主题。为此,我们将向学生提供必要的工具,使他们能够独立开展真实案例研究。学生必须能够将课程中学到的概念传授给非专家。他/她必须培养使用适当的科学语言阐述和交流所学主题的技能。他/她必须能够胜任工作面试并在研讨会和科学会议上发言。学生必须能够更新自己并
化学基因筛选是探索癌细胞对药物的反应如何受其突变影响的有力工具,但它们缺乏从分子层面观察单个基因对暴露反应的贡献。在这里,我们介绍了 sci-Plex- G ene-by- E nvironment(sci-Plex- G x E),这是一个结合单细胞基因和化学筛选的大规模平台。我们通过确定 522 种人类激酶中的每一种对胶质母细胞瘤对不同药物的反应的贡献来强调大规模、无偏筛选的优势,这些药物旨在消除受体酪氨酸激酶途径的信号传导。总的来说,我们在 1,052,205 个单细胞转录组中探测了 14,121 种基因与环境的组合。我们鉴定了一种以 MEK/MAPK 依赖的方式调节的补偿性自适应信号的表达特征。旨在防止适应的进一步分析表明,有前景的联合疗法,包括双重 MEK 和 CDC7/CDK9 或 NF-kB 抑制剂,是防止胶质母细胞瘤转录适应靶向治疗的有效手段。
摘要肠道轴在呼吸道感染期间至关重要,包括流感病毒(IAV)感染。在本研究中,我们使用了高分辨率的shot弹枪元基因组学和靶向代谢组学分析来表征小鼠肠道肠道微生物群的组成和元倾斜度中与流感相关的变化。我们观察到7天(d)7天的分类级变化,包括明显减少乳酸杆菌科和双歧杆菌科的成员,以及akkermansia muciniphila的丰度增加。在D14上,某些物种持续存在扰动。宏基因组数据的功能尺度分析揭示了几种代谢途径的短暂变化,尤其是导致短链脂肪酸(SCFA),多胺和色氨酸代谢物的瞬时变化。对血清的定量靶向代谢组学分析揭示了特定类别的肠道微生物群代谢产物的变化,包括SCFAS,三甲胺,多胺和含吲哚的色氨酸代谢物。在D7上观察到吲哚-3-丙酸(IPA)血液水平的明显降低。微生物群相关的代谢产物的变化与分类单元丰度和疾病标志物水平的变化相关。特别是,IPA与一些乳酸杆菌科和双歧杆菌科(limosilactobacillus reuteri,Animalis limosilactobacillus)正相关,并与细菌M7,病毒载量和炎症标志物呈负相关。在患病动物中补充IPA可减少病毒载量,并降低局部(肺)和全身炎症。用靶向IPA产生细菌的抗生素治疗感染前的抗生素,从而增强了病毒载量和肺部炎症,这是补充IPA抑制的作用。这种综合的宏基因组 - 代谢组分分析的结果强调了IPA是导致流感结果的重要因素和潜在的疾病严重性生物标志物。
动机:元基因组数据集的计算机模拟中的准确性对于基准生物信息学工具以及实验设计至关重要。用户不仅取决于大规模的模拟,不仅是设计实验和新项目,而且还取决于项目中计算需求的准确估计。不幸的是,当前大多数读取模拟器都不适用于过时的宏基因组学,或者记录了相对较差。在本文中,我们描述了Inilicoseq,这是一个软件包,用于模拟宏基因组光明测序数据。Inilicoseq具有简单的命令行接口和广泛的文档。结果:iNilicoseq在Python中实现,能够以具有明智的默认参数的并行方式模拟现实的Illumina(Meta)基因组数据。可用性和实施:源代码和文档可在https://github.com/hadrieng/insilicoseq和https://insilicoseq.readthedocs.io/上获得。联系人:hadrien.gourle@slu.se补充信息:补充数据可从BioInformatics在线获得。
Methods This comparative genomic study included extensively drug-resistant Morganella spp isolates collected between Jan 1, 2013, and March 1, 2021, by the French National Reference Center (NRC; n=68) and European antimicrobial resistance reference centres in seven European countries (n=104), as well as one isolate from Canada, two reference strains from the Pasteur Institute collection (Paris, France), and two来自Bicêtre医院(法国克里姆林 - 比卡特)的可菌素敏感分离株。通过全基因组测序,抗菌敏感性测试和生化测试来表征分离株。也包括来自GenBank(n = 103)的完整基因组进行基因组分析,包括系统发育和核心基因组和抗性的测定。不同物种或亚种之间的遗传距离。通过将遗传分析与脂质A上的质谱分析相结合。
宏基因组学可用于监测抗生素耐药基因的扩散(ARGS)。args在诸如分解和纸牌原理等数据库中发现的源自可培养和致病性细菌,而来自不可培养和非病原细菌的ARG仍然研究了。功能元素基于表型基因的选择,并且可以从具有与已知ARGS共享的潜在低认同性的不可培养的Bacteria中识别出ARG。在2016年,创建了ResfinderFG V1.0数据库,以从功能性研究中收集ARG。在这里,我们介绍了数据库Resfinderfg v2.0的第二个范围,该v2.0可在基因组流行语Web服务器中心(https://cge.food.dtu.dtu.dk/ services/ resfinderfg/)中获得。它包括3913 ARG,由50个精心策划的数据集的功能性宏基因组学鉴定。我们评估了与肠道,土壤和水(海洋 +淡水)全球微型基因目录(https://gmgc.embl.de)相比,我们评估了其检测ARG的潜力。res- finderfg v2.0允许检测未检测到使用其他数据库检测的ARG。这些包括对β-甲酰胺,环素,苯酚,糖肽 /环烯烯和甲氧苄啶 /磺胺酰胺的抗性。因此,ResfinderFG v2.0可用于识别与常规数据库中发现的ARG,从而改善了抗抗性的描述。
*应向谁解决。电话:+33 1 69 82 62 48;电子邮件:sylvie.lautru@i2bc.paris-saclay.fr也可以发送给Olivier Lespinet。电话:+33 1 69 82 62 21;电子邮件:olivier.lespinet@i2bc.paris-saclay.fr†前两位作者应被视为联合第一作者。当前的地址:Drago Haas,Biose Industrie,Aurillac 15000,法国。Matthieu Barba,欧洲生物信息学研究所,欣克斯顿CB10 1SD,英国。CláudiaM。Vicente,Genphyse,Toulouse Univer,Inrae,Envt,Castanet-Tolosan,法国。 AmélieGarénaux,Applied Medical,Rancho Santa Margarita,CA 92688,美国。 Jean-NoëlLorenzi,CNRS,法国巴黎F-75013研究所。 Luisa Laureti,DNA损伤和基因组不稳定性,Marseille癌症研究中心(CRCM); CNR,AIX Marseille大学,Inserm,Paoli-Calmettes,法国马赛。CláudiaM。Vicente,Genphyse,Toulouse Univer,Inrae,Envt,Castanet-Tolosan,法国。AmélieGarénaux,Applied Medical,Rancho Santa Margarita,CA 92688,美国。 Jean-NoëlLorenzi,CNRS,法国巴黎F-75013研究所。 Luisa Laureti,DNA损伤和基因组不稳定性,Marseille癌症研究中心(CRCM); CNR,AIX Marseille大学,Inserm,Paoli-Calmettes,法国马赛。AmélieGarénaux,Applied Medical,Rancho Santa Margarita,CA 92688,美国。Jean-NoëlLorenzi,CNRS,法国巴黎F-75013研究所。Luisa Laureti,DNA损伤和基因组不稳定性,Marseille癌症研究中心(CRCM); CNR,AIX Marseille大学,Inserm,Paoli-Calmettes,法国马赛。
在西方社会,心肌梗死、中风和外周动脉疾病等心血管疾病是导致死亡的主要原因。这些心血管疾病的根本原因是动脉粥样硬化。动脉粥样硬化病变的早期阶段通常出现在生命的前十年,不会引起临床问题。更晚期但稳定的病变可能导致心绞痛等临床表现。当稳定病变变得不稳定并破裂时,就会出现最严重的危及生命的并发症。病变成分暴露于血液会导致血栓形成,从而完全阻塞血流。冠状动脉闭塞可能导致心肌梗死,脑动脉闭塞可能导致中风。稳定斑块变得不稳定并破裂的具体机制尚不清楚。然而,已知细胞外基质重塑在斑块稳定中发挥作用,并受到多种蛋白酶(包括组织蛋白酶)的影响。在这篇论文中,我们发现半胱氨酸蛋白酶组织蛋白酶 K 在稳定病变和含有血栓的病变之间表达存在差异。此外,通过基因缺陷和抑制,我们研究了组织蛋白酶 K 在两种心血管疾病(动脉粥样硬化和动脉瘤形成)中的作用。此外,我们使用功能基因组学方法来识别在动脉粥样硬化斑块(去)稳定中发挥作用的新基因/肽。