。CC-BY 4.0国际许可证。是根据作者/资助者提供的预印本(未经Peer Review的认证)提供的,他已授予Biorxiv的许可证,以在2024年9月28日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2024.09.27.27.614867 doi:Biorxiv Preprint
鲍曼不动杆菌是一种世界范围内分布的高耐药率革兰氏阴性细菌,是造成多种医院内感染的元凶。我们应用计算化学基因组学框架来研究将已获批准的药物重新用于治疗鲍曼不动杆菌。这种综合方法包括汇编和准备蛋白质组学数据、识别药物-靶标数据库中的同源蛋白、评估靶标的进化保守性、进行分子对接研究和体外试验。我们选取了七种药物进行实验测定。其中,他伐硼罗表现出最有希望的抗菌活性,最低抑菌浓度 (MIC) 值为 2 μ g/ml,对几种临床相关菌株具有强效活性,在 16 μ g/ml 浓度下对多重耐药菌株的生物膜具有强大的功效。分子对接研究阐明了他伐硼罗在亮氨酰-tRNA 合成酶的编辑和活性域中的结合模式,从而深入了解了其抗菌活性的结构基础。他伐硼罗有望成为一种对抗鲍曼不动杆菌感染的抗菌剂,值得在临床前研究中进一步研究。
英国在全球范围内被认为是基因组学的领导者,而NHS的独特结构允许在大规模上实现基因组进步,以获得患者的利益。作为NHS England(NHSE)建立国家基因组医学服务(GMS)的一部分,基于100,000个基因组项目的成功,NHS England委托了七个基因组实验室枢纽(GLHS),每个基因组实验室枢纽(GLHS)均负责协调基因组学和基因测试服务,以针对全基因组的一部分,包括整个基因组的一部分。已经创建了七个GMS联盟(每次与其中一个GLH对齐)是为了支持基因组医学在主流医疗保健系统中的系统实施,并利用基因组学的力量来改善我们人群的健康。GLHS和GMS联盟组成的基因组医学服务(GMS):
可用性和实现:Lovis4U在Python3中实现,并在Linux和MacOS上运行。命令行接口涵盖了最实际的用例,而提供的Python API允许在Python程序中使用,集成到外部工具中以及其他自定义。源代码可在github页面上获得:github.com/art- egorov/lovis4u。详细的文档,其中包括示例驱动指南,可以从软件主页上获得:art-egorov.github.io/lovis4u。简介微生物基因组数据库的指数增长已解锁了许多比较基因组分析的机会(1)。各种任务,例如对基因邻域保护的分析(2,3),功能短ORF(4,5)的注释以及基因组变异性热点(6-8)的研究通常需要可视化多个基因组基因局基因局基因局基因局基因局基因局。为此目的开发了几种软件工具。这些子集具有图形用户界面(GUI),例如Artemis比较工具(9),EasyFig(10),Genespy(11)和Geneious Prime(Geneious.com)。另一个类别包括基于Web的应用程序,例如基因图形(12)。此外,还有库,例如r套件genoplotr(13)和gggenes(14),以及python包装Genomediagram(15)。一些工具集成了多种方法,创建混合解决方案。例如,GenView是一种与交互式Web应用程序(16)相结合的Python管道(16),Clinker&ClusterMap.js(17)是一种流行的工具,具有命令行界面和可以生成矢量图形的交互式Web应用程序。尽管这些工具中的许多工具都通过GUIS或Web应用程序具有交互性,但缺乏适用用户友好的命令行工具
机器学习(ML)在遗传学和基因组学方面表现出了巨大的希望,在遗传学和基因组学中,大而复杂的数据集有可能洞悉疾病风险的许多方面,遗传疾病的发病机理以及对健康和健康的预测。但是,由于这种可能性,有责任谨慎行事,以防偏见和可能产生有害意外影响的结果的侵蚀。因此,研究人员必须了解用于评估ML模型的指标,这些指标可能影响结果的关键解释。在这篇评论中,我们提供了用于聚类,分类和回归的ML指标概述,并突出了每个指标的优点和缺点。我们还详细介绍了模型评估期间发生的常见陷阱。最后,我们提供了研究人员如何从基因组学角度进行评估和利用ML模型结果的示例。
营养基因组学是一个快速发展的领域,具有改变疾病预防和管理的潜力。通过将遗传信息与饮食建议相结合,可以制定个性化营养策略来优化健康结果并降低各种疾病的风险。随着研究的不断发展,从营养基因组学获得的见解将在调整饮食干预措施的单个遗传特征,为更有效和个性化的健康和健康方法铺平道路。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2024年9月4日。 https://doi.org/10.1101/2024.09.09.03.610948 doi:Biorxiv Preprint
单细胞基因组学是研究大脑等异质组织的有力工具。然而,人们对遗传变异如何影响细胞水平基因表达的了解甚少。为了解决这个问题,我们将单核、多组学数据集统一处理成一个资源,该资源包含来自 388 个人的前额叶皮层的 280 多万个细胞核。对于 28 种细胞类型,我们评估了基因家族和药物靶标之间表达和染色质的群体水平变化。我们确定了 55 万多个细胞类型特异性调控元件和 140 多万个单细胞表达数量性状位点,我们用它们来构建细胞类型调控和细胞间通讯网络。这些网络体现了衰老和神经精神疾病中的细胞变化。我们进一步构建了一个综合模型,准确推断单细胞表达并模拟扰动;该模型优先考虑了约 250 种疾病风险基因和与相关细胞类型的药物靶标。
基因组减少,无壁和挑剔的螺旋质细菌,支原体,“念珠菌植物植物”和属于Mollicutes级的盟友,以许多独特的微生物学特征而闻名,这些特征促使研究人员调查其基础,应用程序,brown和Brown and Brown and Brown and and 2018。它们主要是居住在真核细胞上或内部的各种动物或植物的寄生或共生。螺旋体以其特征性的螺旋形状和主动抽搐运动性认可,与多样化的节肢动物和植物相关(Gasparich等,2020),并已开发为研究辅助共生体的模型(Anbutsu和Fukatsu,2011; Lo等,2016)。一些螺旋菌POULSONII和螺旋体Ixodetis菌株引起了其昆虫宿主的显着生殖表型,称为男性杀伤(Hurst and Frost,2015年)。相比之下,其他一些与昆虫相关的螺旋形保护其宿主免受天然敌人的侵害,包括寄生虫黄蜂,线虫和致病真菌(Ballinger and Perlman,2019年)。螺旋体柑橘和螺旋藻kunkelii分别臭名昭著,分别是柑橘和玉米的毁灭性病原体(Gasparich等,2020)。支原体不仅在医学上很重要,因为人类或动物病原体(如支原体肺炎)(Waites and Talkington,2004年)和霉菌性霉菌性甲状腺肿(Teodoro等人,2020年),而且还以最小的细菌
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该预印本版本的版权持有人,该版本发布于2024年9月3日。 https://doi.org/10.1101/2024.09.09.03.609457 doi:Biorxiv Preprint