新发/再发病毒实验室。葡萄牙公共卫生实验室部病毒学系 b 意大利罗马生物医学大学可持续发展和“同一个健康”科学与技术系 c 巴西米纳斯吉拉斯州奥斯瓦尔多·克鲁兹基金会雷内·拉丘研究所 d 巴西美洲气候放大疾病和流行病(CLIMADE) e 巴西利亚泛美卫生组织/世界卫生组织(PAHO/WHO)紧急情况和灾难监测、防备和应对协调机构(PHE) f 巴西萨尔瓦多巴伊亚州大学精确和地球科学系 g 巴西米纳斯吉拉斯州中央公共卫生实验室,埃泽奎尔·迪亚斯基金会 h 基因组学系。部来自乌拉圭公共卫生实验室和呼吸道病毒实验室、病毒学部门。乌拉圭公共卫生实验室部 j 美国华盛顿特区洛克菲勒基金会流行病预防倡议 k 美国华盛顿特区泛美卫生组织/世界卫生组织(PAHO/WHO)卫生紧急情况部(PHE)传染病危害管理 l 葡萄牙里斯本大学理学院生物系统与综合科学研究所 m 葡萄牙天主教大学天主教医学院天主教生物医学研究中心 n 葡萄牙欧洲气候放大疾病和流行病(CLIMADE) o 病毒学联盟。部来自乌拉圭公共卫生实验室
全基因组关联研究已将数百万个遗传变异与生物医学表型联系起来,但是由于缺乏机械理解和广泛的上毒相互作用,它们的效用受到了限制。最近,变压器模型已成为机器学习中强大的通用体系结构,具有解决这些挑战和其他挑战的潜力。因此,在这里,我们介绍了基因型到表型变压器(G2PT),这是一个建模变体,基因,多基因功能和表型之间层次信息流的框架。作为概念证明,我们使用G2PT对TG/HDL(甘油三酸酯至高密度脂蛋白胆固醇)的遗传学进行建模,这是代谢健康的指标。g2pt学会通过高度关注24个功能的遗传变异来预测这种特征,包括免疫反应和胆固醇转运,准确性超过了最先进。它暗示了意外的上皮相互作用,包括APOC1和CETP之间的相互作用。这项工作将分层变压器定位为一种在功能上解释多基因风险的一般方法。源代码可在https://github.com/idekerlab/g2pt上找到。
摘要:观赏辣椒植物具有遗传变异性,可以通过形态学和分子特征进入。基因型选择以形成基本种群进行育种,可以通过对几种类型的数据的联合分析进行繁殖,从而提供更高的选择准确性。从这个角度来看,这项研究旨在根据对表型性状和分子标记的分析评估胡椒加入之间的多样性,并选择在育种计划中用作父母的最佳方法。这项研究是在巴西Paraíba的联邦DaParaíba大学的CenciasAgrárias进行的。使用了16种观赏性胡椒基因型,并针对八个定量性状,九个定性性状和18对微卫星引物进行了表征。使用Tocher的聚类方法,Ward的群集算法和差异矩阵进行了同时变量分析。通过定量,定性和分子数据的联合分析,聚类方法在分离基因型,鉴定遗传变异性和准确性方面是有效的。通过Tocher方法(六组)和Ward的方法(三个组)形成了基因型之间的不同组。考虑到定量,定性和分子数据的联合分析,观赏性胡椒基因型之间存在遗传变异。定性性状对于鉴定观赏辣椒垫之间的遗传差异很重要。UFPB基因型46、134、137、443和449,迷你胡椒akamu和品种Calypso被指示用于选择,可用于执行十字架并继续育种计划。
抽象的躯体进化导致跨组织中克隆多样性的出现,对人类健康具有广泛的影响。躯体进化的一个引人注目的例子是由造血干细胞中的体细胞UBA1突变引起的Vexas(液泡E1酶X连接自身炎症体细胞)综合征,诱发了治疗治疗 - 恐怖分子,全身炎症。然而,导致突变体HSC生存和扩展的机制尚不清楚,从而限制了有效疗法的发展。缺乏UBA1突变HSC的动物或细胞模型阻碍了对原代人Vexas样品的分析,该样品具有野生型和UBA1的混合物的分析。为了应对这些挑战,我们应用了单细胞多词,以全面定义了VEXAS患者的转录组,染色质的可及性和信号传导途径改变,从而可以直接比较突变体与野生型细胞在同一环境中的直接比较。我们证实了髓样细胞中UBA1 M41V/T突变的预期富集,并还发现这些突变在天然杀手(NK)
本研究旨在确定黄秋葵基因型 Abelmoschus esculentus (L.) Moench 的果实产量相关性状的分子多样性和遗传分析。8 种黄秋葵基因型来自尼日利亚奥约州伊巴丹国家遗传研究和生物技术中心 (NACGRAB) 的黄秋葵种质资源收藏。本研究使用的 8 个 SSR 标记具有高度多态性,平均等位基因数为 6.63,平均多态信息含量为 0.76。引物将黄秋葵基因型分为 3 个簇。分别为 1、4 和 3 个黄秋葵基因型。三种黄秋葵基因型:NCB00303、NCB00396、NCB00466 在每株果实数量方面表现突出。因此,在未来的黄秋葵育种计划中,它们可以被选为有前途的供体亲本基因型。
图4(A-D)微生物和(E-H)代谢产物的Bray-Curtis差异以及微生物(I-J)(I-J)和代谢物(K-l)的永久性差异。(a) - (h)中的椭圆形表示每个基因型和性别分组的95%置信区间。(i) - (l)中的条表示每个变量解释的永久差异的幅度,p值显示为每个栏上方的数据标签。(i) - (l)中的“残差”变量表示基因型和壳体所不明的差异。微生物组和代谢组分析分别包括41只动物的161个样本和145个样本。Permanova是在每个性别特异性的HAβ-KI队列上进行的,通过将基因型嵌套在housing_id中并使用以下公式:adonis2(formula = data_subset〜基因型/housing_id,data = meta_test,meta_test,meta_test,metage ='bray =“ bray”,dermiutations = 999,dermiputations = 999,permistation = 999,partele = 999,pareallal = 32,by by =“ by x enter =” exter =“ by x exter”)。使用Benjamini-Hochberg错误的发现率调整了所得的Permanova P值(I-L中的条形上方的文本)。haβ-ki,人淀粉样β型敲入; Permanova,方差差异分析; wt,野生型。
生物技术育种方法应用于木本植物的主要瓶颈是由于几种基因型表现出的体外再生困难。另一方面,木本植物,尤其是葡萄树(Vitis vinifera L.),使用大部分农药和其他昂贵的农业投入,因此开发有效的遗传改良方法迫在眉睫。基因组编辑是一种非常有前途的技术,特别是对于酿酒葡萄基因型,因为它允许在一个步骤中修改所需的基因,保留在优良品种中选定和重视的所有品质性状。本文报道了一种用于生产无转基因葡萄植物的基因组编辑和再生方案,利用脂质转染胺介导的 CRISPR - Cas9 核糖核蛋白(RNP)直接递送以靶向八氢番茄红素去饱和酶基因。我们重点研究了内比奥罗 (V. vinifera),这是一种极难在体外生长的葡萄酒基因型,可用来生产优质葡萄酒,例如巴罗洛和巴巴莱斯科。文献中提供的用于高度胚胎发生的葡萄树基因型的 PEG 介导的编辑方法无法使难生长的内比奥罗获得正常的胚胎发育。相反,脂质转染剂对原生质体活力和植物再生没有负面影响,转染后约 5 个月即可获得完全发育的编辑植物。我们的工作是使用脂质转染剂在植物原生质体中递送编辑试剂的首批例子之一。在酿酒葡萄基因型育种方面取得的重要成果可以扩展到其他重要的酿酒葡萄品种和难生长的木本植物。
简介 CRISPR/Cas9 系统彻底改变了植物基因工程领域 1-3 。为了促进植物中先进而精确的定点诱变,CRISPR/Cas9 系统的表达模块经常作为外来 DNA 整合到宿主基因组中。这种整合通常通过粒子轰击或农杆菌介导的转化等方法实现 4-5 。然而,基因组编辑过程通常会在特定的目标植物物种和菌株中遇到挑战。这些挑战主要源于转化过程中植物再生关键步骤可用基因型的限制。值得注意的是,农杆菌介导的拟南芥花浸法 6 或小麦粒子轰击 7 等方法已成功直接生产出基因组编辑植物,
摘要:这项研究的目的是评估甘蔗基因型在植物和拉通甘蔗的反复洪水下的洪水耐受性。对照和重复的洪水条件。由于洪水泛滥,甘蔗身高增加并分配了折痕。洪水减少了甘蔗产量和商业甘蔗糖(CC)的产量,以及甘蔗汁中极化(POL),纯度和CC的百分比。甘蔗洪水的耐受性因基因型而异,KPS01-4-29和SP94-2-483具有最高的洪水耐受性指数,KK07-037,K95-84,KK07-599在洪水条件下的产量最高。此外,在洪水泛滥的条件下,在甘蔗中观察到屈服特征,拐杖身高和甘蔗数之间的关系(r = 0.45*至0.92 **)。由于我们的研究,可以选择耐洪水的甘蔗基因型。用于洪水耐受性的甘蔗基因型选择可能包括甘蔗高度和甘蔗数字作为间接特征。