08/1980-8/1981秘鲁的富布赖特学者09/1981-8/1986 Dept.地质与地球物理科学,普林斯顿大学08/1986-06/1991宾夕法尼亚州助理教授,宾夕法尼亚州07/1991-06/1997宾夕法尼亚州副教授,宾夕法尼亚州立大学01/1995-07/1995-07/1995访问科学家,美国地球地球中心01/1995年7 1995年7月7日71/1995年7月7日77 7日7日。宾夕法尼亚州教授,宾夕法尼亚州07/1998-04/2003 PSU环境化学与地球化学中心主任08/1999-01/2003 PSU生物地质学教育研究计划01/2003-07/2007/2003,2003-2003-07/2003美国地理学院访问者,美国地理研究所MENLO MENLO CENTER,MENLO MENLO MENLO CERTAIN 04/2003-16/2022222222222222-22-22-22-22-22-22-22-22-22-22-22-22-22-22-22-22-2222222222 01/2004-05/2024环境中的同位素和金属实验室主任01/2004-01/2006年地球化学学会副主席09/2004-09/2011 PSU环境动力学分析总监01/2006-01/2006-01/2006-01/2008年2008年,地球社会总裁01/2008年,2010年10月1日页岩网络2013-2015地球科学委员会主席能源,基础能源科学01/2008-08/2021杰出教授,宾夕法尼亚州立大学2012 - 2021年由总统任命的成员核废料技术。审查委员会08/2021-12/2024 Hubert Barnes博士和Mary Barnes地球科学教授07/2022-12/2024 Evan Pugh大学教授01/2025-PRESENT EVAN PUGH大学教授Emerita emerita emerita emerita Geosciences 01/2025-Present-Present-Present-Present-Present Atherton Atherton Honor Emerita Honoremerita and emerita and
湿地中的抽象水文转移是全球重要的甲烷(CH 4)来源,是CH 4排放和碳气候反馈的关键限制。对水文驱动的氧(O 2)的变化如何影响微生物CH 4循环的有限理解使湿地CH 4排放不确定。瞬态o 2暴露在温带沼泽中的植物泥炭中显着刺激了缺氧的CH 4产生,通过富集多酚氧化剂和多糖降解剂,从而增强了底物在随后的缺氧条件下朝着甲烷生成的流动。评估土壤微生物组结构和功能的转移是否在湿地类型的跨类型中相似,我们在这里检查了不同湿地土壤对瞬时氧合的敏感性。在从矿物营养的芬中植入泥炭泥炭的浆液中,以及淡水沼泽和盐泥的沉积物,我们检查了微生物体的时间变化以及浆液的地球化学表征和孵化向前空间。氧合不影响微生物组的结构和富含矿物质的Fen-Origin泥炭和淡水沼泽土壤中的缺氧CH 4产生。与O 2刺激的CH 4产生相关的关键分类单元在膜中泥炭中非常罕见,在芬罗根泥炭中支持微生物组的结构,这是湿地对O 2位变化的主要决定因素。与淡水湿地实验相反,盐泥地球化学(尤其是pH值)和微生物组的结构持续且显着改变后氧合作用,尽管对温室气体的排放没有显着影响。简介这些不同的反应表明,湿地可能对2波动有差异。随着气候变化的变化,湿地中的o 2变异性更大,我们的结果为湿地弹性的机制提供了帮助,并将微生物组结构作为潜在的弹性生物标志物。
6.4.1.3 构造................................................................................................................................ 6-6 6.4.1.4 蚀变................................................................................................................................ 6-6 6.4.1.5 矿化................................................................................................................................ 6-7 6.4.2 Eureka ................................................................................................................................ 6-7 6.4.2.1 矿床尺寸............................................................................................................................. 6-7 6.4.2.2 岩性................................................................................................................................ 6-8 6.4.2.3 构造................................................................................................................................ 6-8 6.4.2.4 蚀变................................................................................................................................ 6-8 6.4.2.5 矿化................................................................................................................................ 6-8 6.4.3 Raven ................................................................................................................................ 6-8 6.4.3.1 矿床尺寸............................................................................................................................. 6-8 6.4.3.2 岩性 ................................................................................................................................ 6-9 6.4.3.3 构造 ................................................................................................................................ 6-9 6.4.3.4 蚀变 ................................................................................................................................ 6-9 6.4.3.5 矿化 ................................................................................................................................ 6-9 6.4.4 Jualin ................................................................................................................................ 6-9 6.4.4.1 矿床规模 ............................................................................................................................. 6-9 6.4.4.2 岩性 ................................................................................................................................ 6-9 6.4.4.3 构造 ................................................................................................................................ 6-11 6.4.4.4 蚀变 ................................................................................................................................ 6-11 6.4.4.5 矿化 ................................................................................................................................6-11 6.4.5 埃尔迈拉 (Elmira)............................................................................................................. 6-11 6.4.5.1 矿床规模 ...................................................................................................................... 6-11 6.4.5.2 岩性 ............................................................................................................................. 6-11 6.4.5.3 结构 ............................................................................................................................. 6-11 6.4.5.4 蚀变 ............................................................................................................................. 6-12 6.4.5.5 矿化 ............................................................................................................................. 6-12 7.0 勘探 ............................................................................................................................. 7-1 7.1 勘探 ............................................................................................................................. 7-1 7.1.1 网格和调查 ............................................................................................................................. 7-1 7.1.2 地质测绘 ............................................................................................................................. 7-1 7.1.4 地球物理学................................................................................................................ 7-1 7.1.5 合格人员对勘探信息的解释............................................................................................... 7-2 7.1.6 勘探潜力...................................................................................................................... 7-2 7.2 钻井...................................................................................................................................... 7-4 7.2.1 概述............................................................................................................................. 7-4 7.2.2 为估算目的而排除的钻井............................................................................................. 7-4 7.2.3 自数据库结束日期以来完成的钻井.................................................................................... 7-4 7.2.4 钻井方法...................................................................................................................... 7-4 7.2.5 测井............................................................................................................................. 7-15 7.2.6 回收率............................................................................................................................. 7-16 7.2.7 钻井环测量........................................................................................................................................................................................................ 7-16 7.2.8 井下勘测 ...................................................................................................................... 7-16 7.2.9 对材料结果和解释的评论 .............................................................................................. 7-16 7.3 水文地质学 ............................................................................................................................. 7-17 7.3.1 取样方法和实验室测定 ............................................................................................. 7-17 7.3.2 对结果的评论 ............................................................................................................. 7-17 7.4 岩土工程 ............................................................................................................................. 7-17 7.4.1 取样方法和实验室测定 ............................................................................................. 7-17 7.4.2 对结果的评论 ............................................................................................................. 7-18
联系信息 海洋科学与保护部 杜克大学海洋实验室 135 Duke Marine Lab Road Beaufort NC 28516 电话:252-504-7655 传真:252-504-7648 clv3@duke.edu 教育 1989 年获得博士学位 麻省理工学院和伍兹霍尔海洋研究所生物海洋学联合项目。 伍兹霍尔海洋研究所生物系。 论文题目:深海中的化学合成群落:生态学研究。 博士学位。 导师:J.F. Grassle 1985 年获得加州大学洛杉矶分校生态学文学硕士学位 1977 年获得罗格斯大学库克学院理学学士学位;环境科学 学术职位 2016 西布列塔尼大学访问科学家 2006- 哈维·W·史密斯教授 杜克大学海洋科学与保护部 2006-2016 杜克大学海洋实验室主任 2006-2016 海洋科学与保护部主任 2006-2014 海洋科学与保护领导力证书主任 2005-2006 威廉玛丽学院生物系副教授 2002-2005 Marjorie S. Curtis 威廉玛丽学院生物系副教授 2005 俄勒冈大学俄勒冈海洋生物研究所讲师 2004 富布赖特研究学者 IFREMER,法国布雷斯特中心 1998-2002 威廉玛丽学院生物系助理教授 1995-1998 科学主任西海岸国家海底研究中心和研究副教授,
• Abe 国际研讨会(第四届氧化应激对人类可持续发展的国际研讨会) • Anastassakis 国际研讨会(第十届可持续矿物加工国际研讨会) • Dibra 国际研讨会(第四届可持续发展规律及其应用国际研讨会) • Kanatzidis 国际研讨会(第四届材料/固态化学与纳米科学促进可持续发展国际研讨会) • Leite 国际研讨会(第十届先进可持续钢铁制造国际研讨会) • Leuenberger 可持续发展制药科学与工业应用国际研讨会 • Lipkowski 国际研讨会(第四届物理化学及其对可持续发展的应用国际研讨会) • Monteiro 复合材料、陶瓷与纳米材料加工、特性与应用国际研讨会(第十届国际研讨会) • Oktik 国际研讨会(第二届可持续玻璃和聚合物加工与应用国际研讨会) • Ross 国际研讨会(第三届可持续发展地球化学国际研讨会) • Rowlands 国际研讨会(第七届可持续数学应用国际研讨会) • Schultz 国际研讨会(第八届智能与可持续先进铁磁与超导磁体科学国际研讨会(SISAM)) • Stelter 国际研讨会(第十届可持续有色金属冶炼与水力/电化学处理国际研讨会) 获奖者涵盖了材料科学的各个领域,这些领域看似截然不同,但都相互关联,并且有着一个共同的可持续性主题。在此背景下,为了表彰他们,峰会举办了众多国际研讨会,涉及以下领域:炼铁和炼钢;电化学;熔盐和离子液体;先进材料;先进制造;先进技术;铝;农林业;电池;生物提取;生物炭、水泥;煤;涂料;复合材料;陶瓷;建筑材料;碳和生物焦;生态系统;教育;能源生产;环境;铁合金;
关于碳氢化合物和天然气储存库微生物学的研究课题具有深远的工业应用。近几十年来,人们对了解地下能源储存库(如煤、油和页岩层)中的微生物群落的兴趣日益浓厚。这一研究领域已扩大到包括氢气和二氧化碳的天然气储存库。科学家们开始揭示微生物通过改变流体地球化学、气体含量甚至渗透性对这些系统产生的意想不到的影响。通过认识到这些微生物对我们工程环境的影响,我们可以制定更好的风险评估、有针对性的缓解策略、扩大能源生产和改进运营指导,最终为更可持续的能源未来做出贡献。这项工作对于推动能源领域的创新至关重要,同时也加深了我们对地下微生物动力学和这些独特极端生态系统的理解。地球的地下环境是最大的生物群落之一,但研究最少,部分原因是无法从这些未知深度获取相关生物样本。然而,出于工业动机,人们钻井并收集地下材料,以进行研究合作。随着 DNA/RNA 测序和创新采样方法的进步,科学家现在能够探索难以进入的地质微生物系统中的微生物群落。地下微生物群落已经进化出适应在营养有限、高压和低氧条件下生存的能力,为深层生物圈的生态学、进化和代谢途径提供了见解。最近的研究拓宽了我们对地质环境中微生物多样性和功能的认识,为从天体生物学到环境科学等领域提供了信息。随着我们揭示这些地下群落的代谢网络,我们对微生物遗传学和分类学有了新的认识,为我们不断增长的微生物生命目录贡献了新数据和新多样性。
课程清单 总计 57+ 个学分,不包括指导通识教育 核心要求 - A(选择 1,3 个学分) ___ EGGS 100 环境科学 (3) ___ EGGS 105 环境问题与选择 (3) ___ EGGS 140 可持续性科学 (3) 核心要求 - B(选择 1,0 个学分)* ___ EGGS 102 世界文化地理 (3) ___ EGGS 104 世界区域地理 (3) 核心要求 - C(选择 1,3 个学分)** ___ EGGS 100 环境科学 (3) ___ EGGS 101 自然地理 ___ EGGS 105 环境问题与选择 (3) ___ EGGS 140 可持续性科学 (3) ___ EGGS 220 环境地质学 (3) 核心要求 - D(选择 1,0 个学分)* 1,3 个学分) ___ EGGS 108 气候变化 ___ EGGS 218 全球水问题 ___ EGGS 255 气象学 ___ EGGS 259 海洋学 同源要求(0 个学分) ___ CHEM 121 科学化学 1 (4)* 同源选修课(选择 1,4 个学分) ___ BIOL 110 生物学原理 1 (4)* ___ PHYS 208 入门物理学 1 (4) 同源数学(选择 2,3 个学分) ___ EGGS 150 定量方法 (3) ___ MATH 150 微积分基本原理 (3)* ___ MATH 160 微积分 1 (4)* ___ STAT 141 统计学简介 (4)* ___ EGGS 342 地质统计学(3) 专业要求(23 个学分) ___ EGGS 120 物理地质学 (4)* ___ EGGS 130 历史地质学 (4) ___ EGGS 213 土壤科学基础 (3) ___ EGGS 242 测绘和 GIS 基础 (3) ___ EGGS 263 矿物学和岩石学 (4) ___ EGGS 265 地貌学 (3) ___ EGGS 271 水文学基础 (3) ___ EGGS 360 GIS 原理 1 (3) 专业选修课:选择 3 门(9+ 个学分) ___ EGGS 275 测量学简介 (3) ___ EGGS 325 无人机应用 (3) ___ EGGS 353 地质测绘与分析 (3) ___ EGGS 368 沉积学与地层学 (3) ___ EGGS 369 构造地质学 (4) ___ EGGS 413 土壤形态、成因与分类 (4) ___ EGGS 414 土壤生物学、化学与肥力 (4) ___ EGGS 415 水成土壤与湿地划分 (4) ___ EGGS 416 应用土壤科学与土地利用 (4) ___ EGGS 420 流域修复 (3) ___ EGGS 421 环境许可 (3) ___ EGGS 451 沿海环境海洋学 (3) ___ EGGS 455 环境影响评估 (3) ___ EGGS 460 水环境地球化学 (4) ___ EGGS 461 能源与矿产资源 (4) ___ EGGS 470 水文地质学 (3) ___ EGGS 471 应用地表水文学 (3) ___ EGGS 480 地球物理方法 (4) ___ MARSCI ### 任何经批准的海洋科学课程 (3)
在成熟的油田生产1兆瓦电力的可行性研究的结果美国能源部地热技术办公室,在2022年向梯度地热协议授予了一项援助协议,以研究和实施内华达州派恩县布莱克本伯恩菲尔德的地热发电。本演讲总结了为期一年的可行性研究和运营计划工作的结果,该研究是该项目的三个阶段中的第一个,重点是该项目中的地球科学和储层工程工作。在Hulen(1993)和Johnson等人的布莱克本(Blackburn)和约翰逊(Johnson)等人的特定提及中概述了选择布莱克本油田作为地热共产和转换的候选者的具体基础。(2020),它是地热共产或转换的前五名候选人。布莱克本田野位于内华达州尤里卡县的Pine Valley,位于Cortez山脉和Sulfur Spring山脉之间。该田地的地理中心位于内华达州278号公路以东,位于40.234057 n,-116.145080 E.田野位置位于内华达州卡林市和内华达州埃尔科的东南部。派恩山谷(Pine Valley)位于大盆地的东部,这是地质省内的一个地区,被称为盆地和山脉,覆盖了加利福尼亚东部,内华达州大部分地区和犹他州西部。该区域的特征是众多平行的线性山脉距离山谷或盆地相互分离。Blackburn特定的文献从1982年发现该领域后几年开始。参考Hulen,J.B.,1993。1992 - 1993年的年度进度报告。同行评审的文献通常是两种类型的研究:在1982年通过Amoco Production,Inc。发现碳氢化合物后,将重点放在布莱克本领域。布莱克本场的探索性钻探始于1980年,当时布莱克本1和2井进行了钻孔。1982年钻探的第三条井《布莱克本3》是该领域的发现。介绍的重点是可行性研究的地下技术细节,例如3D地震分析,产生了流体地球化学分析,地下热通量分析及其对估计地热功率产生的影响。在美国西部的东部盆地和山脉省的石油水库进化中的地热系统。犹他州盐湖城犹他州大学研究所的地球科学实验室,美国能源部地球科学司基础能源科学办公室,美国能源部协定号 de-fg02-90er14133。犹他州盐湖城犹他州大学研究所的地球科学实验室,美国能源部地球科学司基础能源科学办公室,美国能源部协定号de-fg02-90er14133。
蒙特·阿米亚塔(Monte Amiata)是一种杂种火山,在中期中期的305至231 ka之间(Laurenzi等,2015)。他们的产品由一系列熔岩和圆顶组成,从气管/纤维化岩石到橄榄石littite(Corticelli等,2015a; Ferrari等,1996; Marroni等,2015)。火山建筑是在岩浆发射期间从NNE – SSW方向排列的岩浆发射期间建造的(Brogi,2008年)。爆发活动发生在两个短期的植物中(Conticelli等,2015a; Ferrari等,1996; Marroni等,2015),与强烈的风化变化所隔离的水平相距(例如熔岩和圆顶的关键特征包含丰富的圆形杂志飞地(Ferrari等,1996及其参考文献),平坦或圆形的地壳元式Xenoliths(van Bergen,1983),Sanidine meg-Acrysts(Balducci&Leonii,1982),1982年,1982年。The area around the volcano underwent a regional uplift of about 2 km, extending from Monte Amiata to Radicofani volcanoes, covering an area of 35 x 50 km caused by an unspecified magma intrusion at a depth of 5-7 km (Acocella & Mu- lugeta, 2001; Acocella et al., 2002).尽管进行了广泛的研究,但仍在关于熔岩流和圆顶之间的地层关系,硅质末端岩浆的岩化,岩浆室内建筑,异教徒的岩石物理特征以及与岩浆的疗法相互作用的辩论。这项研究的主要观点是评估岩浆源发出的热能以及如何传播地质(Van Bergen,1983; et al。,1981; Calamals,1970; Mazzuol&Prattes,1963),1963年,1963年,1963年(Masage,2019; 2019; 2019; 2019; 2019; 2019; 2019; 2019; 2019,1995; 2019年)(Frondin等,2009a; Nisi et al。,2014; 2014; sbrine et an al an al and and and and and and。地形物理学,地形物理学(Jram等,2017; 2017; 2017,2017,201)pemperia tempeia爪(> 250°C)和2-五个标记的市场(Frondini等,2009b; Sbrana等,2021)。
会增强对微生物和生态系统对干扰的反应的基本理解(图1)。城市化对包括多种微生物组的地球化学,气候和生物群产生了巨大影响。尽管目前的城市地区占全球土地地区的0.5%(Schneider等,2009),但城市土地覆盖范围仍在不断扩大,这可能对环境健康和可持续性有很大的影响(Seto等,2012)。城市化会导致景观碎片,从而减少动植物的生物植物(Delaney等,2010; Liang等,2008; Su等,2011)。城市的光线和声音污染可以改变动物的行为,破坏物种的相互作用,并导致物种丰富度和成分的转变(Ciach&Fröhlich,2017; Firbaugh&Haynes,2016; Francis et al。,2009; Longcore&Rich,2004)。城市中的土壤通常被有机污染物和重金属污染。这些污染物可以压力植物,污染植物组织,影响土壤和传粉动物群落,并为人类居民带来健康风险(Hern Andez&Pastor,2008; Pan等,2018; Pavao-Zuckerman&Coleman,2007; Wang等,2013)。通过温室气体排放(Pichler等,2017),大气氮的沉积(Fenn等,2003)和水污染(Overbo等,2021; Wright等,2011)。同时,城市环境维持关键的生态系统过程。昆虫的花粉可以在城市景观中壮成长,这使它们成为城市保护工作的重点(Baldock等,2019; Hall等,2017)。例如,庞大的城市地区继续提供足够的栖息地,资源和途径来支持高水平的生物多样性(Angold等,2006; Wenzel等,2020)。城市绿色空间可以通过过滤空气,调节气候和放缓径流来帮助抵消城市化的影响(Bolund&Hunhammar,1999; McPhearson等,2015)。城市土壤支持养分循环过程,并使用适当的