如今,已有多种基于星载和低空空中/无人机平台的高光谱遥感传感器可用于地球科学应用,具有多种光谱和空间分辨率[1-4]。高光谱遥感图像的发展促进了新型图像处理技术的发展,并在土壤地球化学、水质评估、森林物种制图、农业压力、矿物蚀变制图等广泛领域取得了令人欣喜的成果。在过去的二十年里,不同的空间机构发射了多个星载高光谱传感器(例如,美国国家航空航天局 (NASA) 于 2000 年 11 月发射的 Hyperion;日本宇宙航空研究开发机构 (JAXA) 于 2019 年 12 月发射的高光谱成像仪套件 (HISUI);意大利航天局 (ASI) 于 2019 年 3 月发射的高光谱应用任务前体探测器 (PRISMA))[1,5,6]。这些传感器充分利用了高光谱数据,并带来了从噪声消除到光谱制图等数据处理方法的创新。先前的研究强调了高光谱星载传感器在识别纯目标和识别具有弱光谱特征的光谱目标方面的局限性,因为这些高光谱传感器具有粗空间分辨率(通常为 20 m 至 30 m)和较差的信噪比(例如,Hyperion 在短波电磁域中的信噪比 (SNR) 较差)[7-10]。然而,这些星载传感器在环境监测方面取得了令人鼓舞的结果(例如,森林覆盖分类、检测森林的物候变化、土地利用/土地覆盖制图、农业土地覆盖表征、作物压力估计、岩性和矿物制图 [11-13])。高光谱图像处理解决了与分类方法相关的主要困难,例如相关数据的高维性和标准处理技术的有限可用性[14]。为了克服这些局限性,最近建立了几种机器学习算法,补充了高光谱数据处理的巨大潜力[14]。由于星载高光谱传感器缺乏全球覆盖,不同国家使用不同的先进高光谱传感器进行常规的基于飞机和无人机的高光谱调查,例如先进的可见红外光谱仪(AVIRIS)及其最新版本AVIRIS-下一代(AVIRIS-NG);HyMap;数字机载成像光谱仪(DAIS)等。这些传感器能够收集
对空气伽马射线图像作为土壤特性指标的实证研究 - 新南威尔士州沃加沃加。Phil Bierwirth 1 、Paul Gessler 2 和 Dermot McKane 3 1 澳大利亚地质调查组织,邮政信箱 378,堪培拉,ACT 2601 2 CSIRO 土壤部,邮政信箱 639,堪培拉,ACT 2601 3 新南威尔士州土地和水资源保护部,邮政信箱 639,堪培拉,ACT 2601 电子邮件:pbierwir@agso.gov.au,电话:(06)2499231,传真:(06) 2499970 摘要 通过对土壤样本中放射性元素丰度和土壤特性的实证分析,可以评估机载伽马射线图像的信息内容。在地质学、地貌学和土壤发生学的背景下进行解释。结果表明,伽马图像能够绘制土壤特性,如 pH 值、成分/营养物质和质地,但伽马响应通常是矿物、地貌和成土过程的混合。在相对地貌不活跃的地区,钾映射浸出和酸度,而钍定义粘土类型和含量。一般而言,包括不同元素迁移在内的多种影响的混合会阻碍简单的解释。解释模型应包括根据地貌和地质将数据细分为不同领域。简介 本文报告了一项试点研究的重要发现,该研究考察了机载伽马辐射数据作为土壤和土地退化快速测绘工具的效用(Bierwirth,1996 年)。航空伽马光谱法通过测量 K、Th 和 U 放射性衰变产生的伽马射线丰度,提供岩石/土壤层顶部 30-45 厘米的地球化学空间图像,植被的影响很小。在特定的景观中,K、U 和 Th 的空间分布以及 U 和 Th 的衰变产物将取决于物理和化学风化过程 - 与主要矿物有关,这些矿物的风化模式受该地区的地貌状况和气候影响。风、地表冲刷和冲积过程对矿物的物理运输占放射性元素分布的大部分(Martz 和 de Jong,1990 年)。矿物成分发生化学分解后,大多数元素都具有可移动性(可溶解或附着于胶体),具体取决于化学条件,而化学条件又可能与矿物学、地貌年龄和气候因素有关。例如,水解作用会释放出钾长石和云母中的 K +,用于伊利石的形成,吸附到其他粘土上或通过流体迁移去除(Wedepohl,1969 年)。酸性溶液将在风化早期阶段取代 H +,从而有助于 K + 的释放,这最初也可能会增加 pH 值 (Wollast,1967)。因此,空气中检测到的 K 分布的空间模式将取决于土壤的矿物学和年龄(即风化状态)。由于空气中的 U 和 Th 数据分别来自衰变产物 214 Bi 和 208 Tl 产生的伽马辐射,因此了解这些元素的所有母体具有相当长的半衰期的流动性方面非常重要。在铀衰变链中,同位素
[1] Du M,Peng X,Zhang H等。地质,环境和生活在世界海洋最深的地方。创新(Camb),2021,2:100109 [2] Stewart HA,Jamieson AJ。HADAL沟渠的栖息地异质性:未来研究的考虑和影响。Prog Oceanogr,2018,161:47-65 [3] Jamieson AJ,Fujii T,市长DJ等。Hadal Trenches:地球上最深的地方的生态。趋势Ecol Evol,2010,25:190-7 [4] Jamieson A.Hadal区域:最深的海洋中的生命[M]。剑桥:剑桥大学出版社,2015年[5] Glud RN,WenzhöferF,Middelboe M等。地球上最深的海洋沟中的沉积物中的微生物碳更换率很高。nat Geosci,2013,6:284-8 [6] Glud RN,Berg P,Thamdrup B等。HADAL沟渠是深海早期成岩作用的动态热点。社区地球环境,2021,2:21 [7]WenzhöferF,Oguri K,Middelboe M等。底栖碳矿化中的矿物质矿化:原位评估2微量精细的测量值。深海Res 1 Oceanog Res Pap,2016,116:276-86 [8] Nunoura T,Nishizawa M,Kikuchi T等。分子生物学和同位素生物地球化学预后,硝化驱动的动态微生物氮循环在hospelagic沉积物中。环境微生物,2013,15:3087-107 [9] Nunoura T,Takaki Y,Hirai M等。HADAL生物圈:对地球上最深海洋中微生物生态系统的洞察力。 Proc Natl Acad Sci u S A,2015,112:E1230-6 [10] Thamdrup B,Schauberger C,Larsen M等。HADAL生物圈:对地球上最深海洋中微生物生态系统的洞察力。Proc Natl Acad Sci u S A,2015,112:E1230-6 [10] Thamdrup B,Schauberger C,Larsen M等。Anammox细菌驱动Hadal沟槽中的固定氮损失。Proc Natl Acad Sci u S A,2021,118:E2104529118 [11] Liu S,Peng X. Hadal环境中的有机物成分:来自Mariana Trench Sediments的孔隙水地球化学的见解。深海Res 1 Oceanogr Res Pap,2019,147:22-31 [12] Cui G,Li J,Gao Z等。在挑战者深处的深渊和哈达尔沉积物中微生物群落的空间变化。peerj,2019,7:e6961 [13] Peoples LM,Grammatopoulou E,Pombrol M等。从两个地理分离的哈达尔沟中的沉积物中的微生物群落多样性。前微生物,2019,10:347 [14] Li Y,Cao W,Wang Y等。在玛丽安娜南部沟渠沉积物中的微生物多样性。J Oceanol Limnol,2019,37:1024-9 [15] Nunoura T,Nishizawa M,Hirai M等。从挑战者深处的沉积物中的微生物多样性,玛丽安娜沟。Microbes Environ,2018,33:186-94 [16] Jian H,Yi Y,Wang J等。居住在地球上最深海洋的病毒的多样性和分布。ISME J,2021,15:3094-110 [17] Hiraoka S,Hirai M,Matsui Y等。 微生物群落和对的反式沉积物的地球化学分析ISME J,2021,15:3094-110 [17] Hiraoka S,Hirai M,Matsui Y等。微生物群落和对
a 南京师范大学虚拟地理环境教育部重点实验室,南京 210023,中国 b 海军学院研究院,布雷斯特海军,Lanveoc-Poulmic,BP 600,29240 Brest Naval,法国 c 瑞士西北应用科学与艺术大学工程学院交互技术研究所,Bahnhofstrasse 6,5210 Windisch,瑞士 d 香港理工大学土地测量与地理信息学系,香港九龙红磡漆咸道南 181 号,中国 e 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室(LREIS),北京 100101,中国 f 宾夕法尼亚州立大学地理系,宾夕法尼亚州立大学公园,16802,美国 g 萨尔茨堡大学地理信息学系 - Z_GIS,萨尔茨堡,奥地利 h Dana & David Dornsife南加州大学文学、艺术与科学学院、空间科学研究所,美国加利福尼亚州洛杉矶 i 伦敦大学学院高级空间分析中心(CASA),英国伦敦 j 香港中文大学地理与资源管理系及空间与地球信息科学研究所,中国香港 k 瑞士西部应用科学与艺术大学,沃州商业与工程学院(HEIG-VD),INSIT 研究所,1400,伊韦尔东莱班,瑞士 l 地理信息系统实验室(LASIG),建筑、土木与环境工程学院,洛桑联邦理工学院(EPFL),瑞士洛桑 m 地理空间分子流行病学组(GEOME),生物地球化学实验室(LGB),洛桑联邦理工学院(EPFL),瑞士洛桑 n 开罗大学工程学院公共工程系,吉萨12613,埃及 o 伦敦大学学院土木、环境与测绘工程系 SpaceTimeLab,英国伦敦 p 建筑、土木工程与大地测量大学制图实验室,保加利亚索非亚 1164 q 马萨里克大学地理研究所地理信息学与制图实验室,捷克布尔诺 60177 r 纽约大学坦登工程学院城市科学与进步中心计算机科学与工程系,美国纽约布鲁克林 Jay St 370 号 13 楼,邮编 11201 s 瓦赫宁根大学与研究中心地理信息科学与遥感实验室,荷兰瓦赫宁根 6708 t 多伦多都市大学土木工程系,加拿大多伦多 ON M5B 2K3 u 西安交通大学人文社会科学学院,中国西安 710049 v 城市研究与设计系可感知城市实验室规划,麻省理工学院,马萨诸塞州剑桥 02139,美国 w 环境信息学系,亥姆霍兹环境研究中心有限公司 - UFZ,德国莱比锡 x 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室,南昌 330022,中国 y 地理环境演变国家重点实验室培育基地(江苏省),南京 210023,中国 z 江苏省地理信息资源开发与应用协同创新中心,南京 210023,中国 aa 中国科学院大学,北京 101408,中国
a 南京师范大学虚拟地理环境教育部重点实验室,南京 210023,中国 b 海军学院研究院,布雷斯特海军,Lanveoc-Poulmic,BP 600,29240 Brest Naval,法国 c 瑞士西北应用科学与艺术大学工程学院交互技术研究所,Bahnhofstrasse 6,5210 Windisch,瑞士 d 香港理工大学土地测量与地理信息学系,香港九龙红磡漆咸道南 181 号,中国 e 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室(LREIS),北京 100101,中国 f 宾夕法尼亚州立大学地理系,宾夕法尼亚州立大学公园,16802,美国 g 萨尔茨堡大学地理信息学系 - Z_GIS,萨尔茨堡,奥地利 h Dana & David Dornsife南加州大学文学、艺术与科学学院、空间科学研究所,美国加利福尼亚州洛杉矶 i 伦敦大学学院高级空间分析中心(CASA),英国伦敦 j 香港中文大学地理与资源管理系及空间与地球信息科学研究所,中国香港 k 瑞士西部应用科学与艺术大学,沃州商业与工程学院(HEIG-VD),INSIT 研究所,1400,伊韦尔东莱班,瑞士 l 地理信息系统实验室(LASIG),建筑、土木与环境工程学院,洛桑联邦理工学院(EPFL),瑞士洛桑 m 地理空间分子流行病学组(GEOME),生物地球化学实验室(LGB),洛桑联邦理工学院(EPFL),瑞士洛桑 n 开罗大学工程学院公共工程系,吉萨12613,埃及 o 伦敦大学学院土木、环境与测绘工程系 SpaceTimeLab,英国伦敦 p 建筑、土木工程与大地测量大学制图实验室,保加利亚索非亚 1164 q 马萨里克大学地理研究所地理信息学与制图实验室,捷克布尔诺 60177 r 纽约大学坦登工程学院城市科学与进步中心计算机科学与工程系,美国纽约布鲁克林 Jay St 370 号 13 楼 11201 s 瓦赫宁根大学与研究中心地理信息科学与遥感实验室,荷兰瓦赫宁根 6708 t 多伦多都市大学土木工程系,加拿大多伦多 ON M5B 2K3 u 西安交通大学人文社会科学学院,中国西安 710049 v 城市研究与设计系可感知城市实验室规划,麻省理工学院,马萨诸塞州剑桥 02139,美国 w 环境信息学系,亥姆霍兹环境研究中心有限公司 - UFZ,德国莱比锡 x 江西师范大学鄱阳湖湿地与流域研究教育部重点实验室,南昌 330022,中国 y 地理环境演变国家重点实验室培育基地(江苏省),南京 210023,中国 z 江苏省地理信息资源开发与应用协同创新中心,南京 210023,中国 aa 中国科学院大学,北京 101408,中国
1标题:海洋沉积铀与钡比作为2更新世底部水氧浓度的潜在定量代理3 4作者:5 Kassandra M. Costa 1; Sune G. Nielsen 1,2; Yi Wang 1,2; Wanyi Lu 1; Sophia K. V. Hines 3; 6 Allison W. Jacobel 4,5; Delia W. Oppo 1 7 8隶属关系:9 1伍兹洞海洋学机构,伍兹孔海洋学机构,伍兹10洞,马萨诸塞州,美国,美国11 2 Nirvana Laboratories,Woods Hole Oceanographic Institution,伍德斯海洋学会,马萨诸塞州伍兹洞,美国马萨诸塞州12 3 3 3 3 3海洋化学和地球化学系美国VT,美国15 5地球,环境和行星科学系,布朗大学,美国RI 16号,美国16号,17 18联系人:19 Kassandra M. Costa; kassandra.costa@whoi.edu 20 21摘要22 23氧气对海洋生态系统至关重要,并且通过呼吸与深海中的碳储存24相关。过去重建氧气浓度受到25个缺乏定量而不是定性代理的限制,但是最近已经开发了几种新的(半)26个定量氧气代理。在这项研究中,我们通过将其标准化为28(BA)来探讨了将大量沉积铀(U)添加到此列表中的27种可能性。首先,在全球尺度上比较了u/ba和底部水氧浓度,使用核心顶部数据库,在大于200 m的水深度中,使用核心顶部数据库进行了比较。35 U/BA的氧气重建通常与先前36个发表的烯酮保存和底栖有孔虫的表面孔隙率记录的氧气相一致。然后,30在较小的空间31量表上,U/BA和底部水氧之间的关系进行了检查:在每个海洋盆地内,在赤道太平洋,32阿拉伯海和西方赤道大西洋的东部区域内。在此区域量表上,次要33对U和BA行为的影响可能在空间上更均匀,经验34分段线性校准得以开发,随后在Downcore Records上进行了测试。也已经确定了U/BA作为氧气代理的效用的几个局限性。代理38仅应在包含39硫酸盐的硫酸盐的最上层间隔中应用,以最大程度地减少稀释岩成岩的成岩作用,并且应监测磷含量的40个潜在影响磷灰石对铀含量的潜在影响。u/ba在平均冰川和冰川间期间与气候42转变期间记录41个氧气浓度更为成功,当时的时间和振幅可能对燃烧和43平滑。对校准的保守误差导致44个区域U/BA的最大效用,其氧气浓度相对较高(例如,> 50 µ mol/kg)和较大的氧45个变异性(±10s µ mol/kg)。即使使用这些注意事项,u/ba也是两个定量的46氧气代理之一,可能能够记录高于50 µ mol/kg的可变性,而另外47个研究在48个努力中对其在不同环境环境中的功能进行了研究,可以在过去的48个努力中重建过去的氧气浓度的整个氧气浓度。
土壤以有机和无机形式(全球3000亿吨的订单)中存储了大量的碳,这比在大气和陆地上的碳多。由于耕种和侵蚀,在过去一个世纪中,美国1.66亿公顷的农业土壤损失了大量碳,但有明显的潜力可以扭转这一趋势并积极地管理农业土地,并采用从大气中捕获CO 2的策略。Terraforming土壤能量土壤射击研究中心(EERC)将通过有机和无机碳循环途径来研究新的生物和地理工程技术,以了解土壤中的可扩展性和负担得起的CO 2。该中心的总体目标是通过有机和无机途径促进对土壤中的CO 2抽吸的基本了解,测量与土地管理实践有关的土壤C存储能力,耐用性和区域变化。在目标1中,合成生物学工具将用于加速自然存在的植物和微生物性状,这些植物和微生物特征形成了CO 2固定过程,有机物形成和矿物质溶解。组合的基因组测序和同位素追踪方法将用于量化有机物如何随着时间的推移而产生的基本机制以及需要更好地反映在过程模型中的植物和微生物的特征。但目前,土壤风化,土壤生物学和有机物循环之间的相互作用知之甚少。在目标2中,该中心将集中在原发性矿物质和有机物 - 阵营络合物形成期间可能发生的积极相互作用上,这些可能会通过有机和无机途径组合来加速土壤CO 2的巨大潜力。中心的现场和基于实验室的研究将衡量如何将土壤管理方法“堆叠”在一起,从
1 土木工程档案 国际 Scopus 1230-2945 P+ O 4 8,000 2 土木工程与建筑 Natl Google 2332-1091 印刷版 3 3,500 3 土木工程基础设施期刊(延期) 国际 Scopus 2322-2093 P + O 2 7,000 4 大地测量与制图(GAC) 国际 Scopus 2029-6991 P+ O 4 5,000 5 地理 Natl Google 印刷版 1 2,900 6 全球结构设计与施工期刊 Natl Google 印刷版 3 3,500 7 i-manager 信息技术期刊(JIT) Natl Google 2278-7887 P + O 4 3,000 8 i-manager 软件工程期刊(JSE) Natl Google 2231-1068 P+O 4 3,000 9 印度尼西亚地理杂志 国际 Scopus 2354-9114 P+O 3 2,500 10 国际地理研究杂志 国际 Google 2454-8685 P+O 2 2,800 11 国际计算土木与结构工程杂志 国际 Scopus 2587-9618 印刷版 4 9,000 12 国际土木工程与技术杂志 国家 Google 0976-6308 印刷版 6 12,000 13 国际商业建筑与管理杂志 国家 Google 印刷版 3 3,500 14 国际生态与环境科学杂志 国际 Google 2664-7109 印刷版 2 4,000 15 国际地理、地质与环境杂志 国际 Google 2706-7491 印刷版 2 2,950 16 国际可持续发展与规划杂志 国际 Scopus 1743-7601 P + O 8 30,000 17 国际水电与土木工程研究杂志 国际 Google P + O 2 3,000 18 国际结构设计与施工研究杂志 国际 Google P + O 2 3,000 19 国际水资源与水利工程高级研究杂志 国家 Google 印刷版 2 3,500 20 ISRM(印度)杂志 国家 Google 2277-1328 印刷版 2 1,175 21 土木与环境工程高级研究杂志 国家 Google 2394-7020 印刷版 2 3,500 22 地球科学与遥感高级研究杂志 国家 Google 2455-3190 印刷版 2 3,500 23石油技术与管理高级研究杂志 Natl Google 打印 3 3,500 24 汽车技术与运输系统高级研究杂志 Natl Google 打印 2 3,500 25 土木工程计算技术高级研究杂志 Natl Google 打印 2 3,500 26 建筑与城市建筑高级研究杂志 Natl Google 2456-9925 打印 2 3,500 27 应用地球化学杂志 Natl Google 2319-4316 打印 4 4,300 28 建筑与城市规划杂志(JAU) Intl Scopus 2029-7955 P + O 1 5,000 29 土木工程与建筑工程杂志 Natl Google 打印 3 3,500 30 土木工程与管理杂志 Intl Scopus 1392-3730 P+ O 8 12,000 31 土木工程与技术研究 Natl Google Print 3 3,500 32 土木机械工程杂志 Natl Google Print 3 3,500 33 发展中国家建筑杂志 Intl Scopus 1823-6499 P+ O 2 7,000 34 建筑工程与技术杂志 国家 Google 打印 3 3,500 35 环境工程与景观管理杂志 国际 Scopus 1648-6897 P + O 4 8,000 36 洪水工程与科学研究杂志 国家1 Google 打印 3 3,500 37 地理信息学与自然灾害杂志(JGNH) 国家 Google 2454-5317 P + O 4 3,500 38 岩土工程和地理计算工程杂志 国家 Google 打印 3 3,500 39 岩土工程与工程结构杂志(JGES) 国家 Google 2454-6909 P + 0 4 3,500 40 水电与土木工程杂志 国家 Google 打印 3 3,500 41 区域与城市规划杂志 国际 Scopus 2502-6429 P+ O 2 8,000 42 《土壤与水保护杂志》 Natl Google 2455-7145 印刷版 4 5,650 43 《测量与结构工程杂志》 Natl Google 印刷版 3 3,500 44 《水资源与土木工程技术杂志》 Natl Google 印刷版 3 3,500 45 《Khoj:国际同行评议地理学杂志》 Natl Google 2455-6963 印刷版 1 1,750 46 《波兰环境研究杂志》 Intl Scopus 1230-1485 P+ O 6 13,400 47 《研究与评论:混凝土创新与材料科学》 Natl Google 印刷版 2 3,500 48 《Scienxt:国际土木工程杂志》 Intl Scribd 印刷版 2 2,800 49 《TAI 杂志》 Natl Google 2278-4713 打印 2 1,175