在第一部分中,我们将从一些代数可解决的问题开始。这种方法的关键是观察到,任何物理系统的量子理论都可以看作是可观察到的代数的单一不可约形表示。,我们将探索并阐明单位性和不可及性的含义,因为我们更深入地考虑了我们考虑的各种示例。我们的方法将更多地是一种自下而上的方法,从细节转变为一般的修复。但是,此时一些一般的观察结果可能很有用。可观察到的操作员代数不能只是任何代数。我们需要一种将代数的操作员或元素连接到可以在实验室中测量的实数的方法。因此,有必要在代数上进行某个规范的概念。也需要一个共轭概念来赋予操作员的墓穴。最少的要求将以观察力为c ∗ - 代数。(对于相对不变的现场理论,需要其他要求,例如Poincar´e不变性。)
多梁超导体中孤立的平流的超流体重量包含频带量子公制的贡献和晶格几何术语,该晶格几何术语取决于晶格中的轨道位置。由于超流动性的重量是超导体能量弹力的量度,因此它与晶格几何形状无关,导致频带的最小量子指标[phys [phys]。修订版b 106,014518(2022)]。在这里,开发了一种扰动方法来研究复合带的超流体重量及其晶格几何依赖性。当所有轨道表现出均匀的配对时,量子几何项包含每个频段的贡献和复合材料中每对频段之间的带间贡献。基于频带表示分析,它们为隔离的平流复合物的超级流体重量提供了拓扑下限。使用这种扰动方法,获得了晶格几何贡献的分析表达。它以Bloch函数的形式表示,提供了一个方便的公式,以计算多纤维超导体的超级流体重量。
旋转双层石墨烯(TBG)中的平带超导性和量子几何 平带中的非费米液体正常态 平带超导体中的非平衡传输 平带中的直流电导率 多体量子度量和德鲁德重量
13.1 地心地球固定笛卡尔坐标系 (ECEF 或 ECR) .......................................................................... 65 13.2 椭球地理坐标系 .............................................................................................................. 65 13.3 局部地心坐标系 (LTS) ............................................................................................................. 65 13.4 地理坐标系和地心坐标系之间的转换 ............................................................................. 66 13.5 地心 (ECR) 坐标系和局部地心 (LTS) 坐标系之间的转换 .................................. 67 13.6 大地基准 ............................................................................................................................. 67 13.7 地图投影 ............................................................................................................................. 68 13.8 大地水准面和椭球高程 ............................................................................................................. 68 13.9 准惯性坐标系 (ECI 地心惯性) ............................................................................................. 69
计算RNA设计任务通常被提出为反问题,其中设计序列是基于采用单个所需的二级结构而不考虑3D几何和构象多样性的。我们介绍了Grnade,这是在3D RNA骨干上运行的G型RNA de标志管道,以设计明确解释结构和动力学的序列。在引擎盖下,Grnade是一个多状态图神经网络,它在一个或多个3D主干结构上生成候选RNA序列,在该结构中,碱的身份未知。在单态固定骨架上,来自Das等人鉴定的PDB的14个RNA结构的重新设计基准。[2010],与罗塞塔(Rosetta)相比,Grnade获得了更高的天然序列恢复率(平均为56%)(平均45%),与Rosetta报道的小时相比,要花一秒钟的时间才能产生设计。我们进一步证明了Grnade在用于结构柔性RNA的多状态设计的新基准上的实用性,以及对最近的RNA聚合酶核酶结构的回顾性分析中突变适应性景观的零摄像排名。
摘要 - 我们介绍Lista(LiDAR时空时空肛门),这是一个系统,可使用Multi-Mession Slam检测概率对象级变化。许多应用程序需要这样的系统,包括施工,机器人导航,长期自治和环境监控。我们专注于在数周或几个月内添加,减去或更改对象的半静态场景。我们的系统结合了使用学识渊博的描述符来跟踪一组开放的对象的多态度激光雷达大满贯,体积差异,对象实例描述和对应分组。任务之间的对象对应关系是通过聚类对象的描述符来确定的。我们使用在模拟环境中收集的数据集和使用安装在四倍的机器人上的LIDAR系统捕获的现实世界数据集来证明我们的方法,该数据集捕获了一个固定,半静态和动态对象的工业设施。与现有方法相比,我们的方法在检测半静态环境的变化方面表现出了卓越的性能。
拖拉图是脑白质的虚拟表示。它由数百万的虚拟纤维组成,编码为3D polyline,近似于白质轴突途径。迄今为止,拖拉图是最准确的白质表示形式,因此用于诸如神经塑性,脑部疾病或脑网络的术前计划和研究。然而,众所周知的问题是,大部分的拖拉机在解剖学上并不合理,并且可以被视为跟踪程序的伪像。使用验证者,我们使用一种新颖的完全监督的学习方法解决了过滤术的问题。与基于信号重建和 /或大脑拓扑正则化的其他方法不同,我们使用现有的白质解剖学知识来指导我们的方法。使用根据解剖学原理注释的拖拉图,我们训练我们的模型验证者,以将纤维分类为解剖上合理或不合理的纤维。所提出的验证模型是一种原始的几何深度学习方法,可以处理可变尺寸纤维,同时又不变到纤维方向。我们的模型将每个文件视为点的图表,并且通过通过提出的序列边缘卷积之间的边缘学习特征,它可以捕获基本的解剖学特性。在一组广泛的实验中,输出过滤结果高度准确,稳健,并且快速;使用12GB的GPU,对1m纤维的拖拉图进行了填充,需要少于一分钟。可在https://github.com/fbk-nilab/verifyber上获得验证实现和训练有素的模型。
Gandhigram农村研究所的农村能源中心致力于通过教育,研究和社区影响来推进可再生能源技术。非常关注可持续性,我们弥合了学术界,工业和农村发展之间的差距。
Gandhigram农村研究所的农村能源中心致力于通过教育,研究和社区影响来推进可再生能源技术。非常关注可持续性,我们弥合了学术界,工业和农村发展之间的差距。
正射影像被广泛认为是各种专题制图应用的数据源;在欧盟 (EU),管理共同农业政策的信息系统目前通常基于数字正射影像覆盖,其标称几何质量为 1:10,000 地图比例尺等效和 1m 像素大小或更高 (Kay et al., 1997)。尽管如此,机载图像采集需要一定程度的访问权限,而这并不总是可行的,而所谓的“非常高分辨率”(VHR) 卫星传感器的可用性允许采集具有图像内容质量特征的数据,以满足农村地区或农业制图和监测的需求 (Petrie, 2002)。目前使用 QuickBird 和 IKONOS 数据生成正射影像的主要方法有三种:严格的传感器模型(例如,Toutin 和 Cheng,2003)、使用地面控制点计算的有理多项式系数 (RPC) 方法,或使用影像供应商提供的 RPC 信息。前两种