正射影像被广泛认为是各种专题制图应用的数据源;在欧盟 (EU),管理共同农业政策的信息系统现在通常基于数字正射影像覆盖,其标称几何质量为 1:10,000 地图比例尺当量和 1m 像素大小或更高 (Kay et al., 1997)。尽管如此,机载图像采集需要一定程度的访问,而这并不总是可行的,而所谓的“非常高分辨率”(VHR) 卫星传感器的可用性允许采集具有图像内容质量特征的数据,以满足农村地区或农业制图和监测的需求 (Petrie, 2002)。目前使用三种主要方法从 QuickBird 和 IKONOS 数据生成正射影像:严格的传感器模型(例如,Toutin 和 Cheng,2003)、使用地面控制点计算的有理多项式系数 (RPC) 方法或使用影像供应商提供的 RPC 信息。前两种
定位病变是结肠镜检查的主要目标。3D感知技术可以通过恢复结肠的3D空间信息来提高病变局部局部的准确性。但是,现有方法集中于单个帧的局部深度估计,并忽略了结肠镜的精确全局定位,因此未能提供病变的准确3D位置。此短缺的根本原因是双重的:首先,现有方法将结肠深度和结肠镜构成估计为独立任务,或将其设计为并行子任务分支。其次,结肠环境中的光源与结肠镜一起移动,从而导致连续框架图像之间的亮度波动。为了解决这两个问题,我们提出了一个新型的基于深度学习的视觉探针框架Colvo,它可以使用两个关键组成部分不断地估算结肠深度和结肠镜姿势:深度和姿势估计的深度策略(DCDP)和轻型一致的校准机制(LCC)。dcdp对夫妇融合和损失函数的利用对夫妇深度和构图估计模式的限制确保了连续帧之间几何投影的无缝比对。同时,LCC通过重新校准相邻帧的光度值来解释亮度变化,从而增强了Colvo的鲁棒性。对COLVO在结肠探测基准上进行的全面评估揭示了其在深度和姿势估计的最新方法上的承受能力。我们还展示了两个有价值的应用:肠道立即定位和完整的3D重建。Colvo的代码可从https://github.com/xxx/xxx获得。
华盛顿大学核理论研究所,华盛顿州西雅图 98195-1550,美国(日期:2021 年 2 月 10 日 - 21:58)摘要无质量无相互作用标量场理论中两个不相连区域之间可蒸馏纠缠的上限具有由几何衰减常数定义的指数衰减。当用空间晶格在短距离内调节时,这种纠缠会突然消失在无量纲分离之外,从而定义负球体。在两个空间维度中,我们通过一系列晶格计算确定一对圆盘之间的几何衰减常数以及负球体向连续体的增长。与三维空间量子场论建立联系,假设此类量子信息尺度也出现在量子色动力学 (QCD) 中,则在描述核子和原子核低能动力学的有效场论中可能会出现一种新的相对尺度。我们重点介绍了可蒸馏纠缠结构对有效场论、格点 QCD 计算和未来量子模拟的潜在影响。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
量子状态的实时和想象的时间演变是研究量子动态,准备接地状态或计算热力学可观察物的强大工具。在近期设备上,各种量子时间演变是这些任务的有前途的候选人,因为可以量身定制所需的电路模型以权衡可用的设备功能和近似准确性。但是,即使可以可靠地执行电路,由于量子几何张量(QGT)的计算,变异量子时间演化算法对于相关系统大小而迅速变得不可行。在这项工作中,我们通过利用双重公式来规避对QGT的明确评估来解决这个缩放问题。我们演示了海森伯格汉密尔顿的时间演变的算法,并表明它以标准变化量子时间演化算法的成本的一小部分准确地重现了系统动力学。作为量子假想时间演变的应用,我们计算了Heisenberg模型的热力学观察到的每个位置的能量。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年3月19日发布。 https://doi.org/10.1101/2024.03.18.585651 doi:Biorxiv Preprint
计算RNA设计任务通常被提出为反问题,其中设计序列是基于采用单个所需的二级结构而不考虑3D几何和构象多样性的。我们介绍了Grnade,这是在3D RNA骨干上运行的G型RNA de标志管道,以设计明确解释结构和动力学的序列。在引擎盖下,Grnade是一个多状态图神经网络,它在一个或多个3D主干结构上生成候选RNA序列,在该结构中,碱的身份未知。在单态固定骨架上,来自Das等人鉴定的PDB的14个RNA结构的重新设计基准。[2010],与罗塞塔(Rosetta)相比,Grnade获得了更高的天然序列恢复率(平均为56%)(平均45%),与Rosetta报道的小时相比,要花一秒钟的时间才能产生设计。我们进一步证明了Grnade在用于结构柔性RNA的多状态设计的新基准上的实用性,以及对最近的RNA聚合酶核酶结构的回顾性分析中突变适应性景观的零摄像排名。
摘要 传统的区域网平差已广泛用于确定摄影测量地面点坐标和摄影的外部方向参数,以用于测绘目的。地面控制点对于将图像坐标系与物体空间坐标系联系起来、确保传统摄影测量区域网的几何稳定性以及控制误差传播是必不可少的。地面控制点的建立对任何测绘项目的成本和时间消耗产生重大影响,这是摄影测量人员一直在寻找用辅助数据(例如全球定位系统)替代地面控制的主要原因。本文介绍了一种 GPS 控制的单条三角测量新技术,该技术使用位于航线沿线的人造结构(例如高压塔、高层建筑)的几何约束。还研究了不同 GPS 测量精度的影响。对具有这些约束的 GPS 光束带平差的精度和可靠性进行了模拟分析。
使用来自几何力学的原理构建的机器人运动的数据驱动模型已显示[Bittner,Hatton等。2018; Dan Zhao,Bittner等。2022; Hatton等。2013]为各种机器人提供机器人运动的有用预测。对于具有有用数量DOF的机器人,这些几何力学模型只能在步态附近构建。在这里,我们展示了如何将高斯混合模型(GMM)用作流形学习的一种形式,该形式学习了几何力学“运动图1”的结构,并证明了:[i]与先前发表的方法相比,预测质量的可观改善; [ii]可以应用于任何运动数据集的方法,而不仅仅是周期性步态数据; [iii]一种预先处理数据集以促进在已知运动图是线性的地方外推的方法。我们的结果可以在数据驱动的几何运动模型的任何地方应用。
第 1 章 简介 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .................................................................................................................................................................................. 16 1.1.4 李群 .................................................................................................................................................................................................. 18 1.2 跟踪算法 .................................................................................................................................................................................. 19 1.2.1 最近邻滤波器 .................................................................................................................................................................. 19 1.2.1 最近邻滤波器 .................................................................................................................................................................. 19 . . . 19 1.2.2 全局最近邻滤波器. . . . . . . . . . . 19 1.2.3 概率数据关联滤波器. . . . . . . . . . . 20 1.2.4 联合概率数据关联滤波器. . . . . . . . . . 20 1.2.5 多重假设跟踪. . . . . . . . . . . . 21 1.2.6 概率多假设跟踪器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
