“将石墨材料塑造成高级应用的复杂几何形状,一直是一个关键挑战,限制了其广泛采用。”滑铁卢化学工程系教授Milad Kamkar博士说。“使用我们提出的方法,我们可以将3D-Print石墨烯变成任何形状。”
光谱可用于获取有关原子和分子能级、分子几何结构、化学键、分子相互作用和相关过程的信息。光谱通常用于识别样本的成分(定性分析)。光谱也可用于测量样本中的物质含量(定量分析)。
di usion MRI是无创探测大脑中组织微观结构的有价值的工具。今天,基于模型的技术已广泛可用,用于白质表征,其发育相对成熟。相反,灰质中的组织建模更具挑战性,并且没有普遍接受的模型。随着测量技术的进步和建模效果,这是一种临床上可行的技术,它揭示了灰质微观结构的显着特征,例如准球形细胞体的密度和准圆柱形细胞的投影,是一个令人兴奋的前景。As a step towards capturing the microscopic architecture of grey matter in clinically feasible settings, this work uses a biophysical model that is designed to disentangle the diffusion signatures of spherical and cylindrical structures in the presence of orientation heterogeneity, and takes advantage of B-tensor encoding measurements, which provide additional sensitivity compared to standard single diffusion encoding sequences.为了对微观结构参数进行快速且可靠的估计,我们利用机器学习的最新进展,并使用人工神经网络替换常规拟合技术,该技术在几秒钟内拟合复杂的生物物理模型。我们的结果表明,与白质相比,在健康人类受试者中,球形和圆柱形几何形状的明显标记,尤其是灰质中球形隔室的体积分数增加。我们评估了球形和圆柱几何形状的程度,可以分别解释为神经体和神经投影的相关性,并在存在各种偏离建模假设的情况下量化参数估计误差。虽然需要进一步的工作将这项工作中提出的思想转化为诊所,但我们建议将重点关注准球形细胞几何形状的生物标志物对于增强神经发育障碍的评估和神经退行性疾病的评估可能是有价值的。
摘要。在金属材料的定向能量沉积 (DED) 工艺中,线激光增材制造 (WLAM) 的特点是使用激光束熔化金属线并产生焊珠。重叠焊珠的连续沉积产生体积以获得零件。因此,控制焊珠的几何形状对于增材制造工艺至关重要。一些研究工作已经研究了这些几何形状以及主要制造参数对其尺寸的影响,但很少有研究进料方向或线角度的影响。此外,所有关于线角度的研究都是在横向进料和恒定激光方向下进行的。本文重点研究了同轴线进料的沉积头方向对焊珠几何形状的影响,其中有 3 束激光。以相对于水平基板的不同方向进行实验,并使用光学仪器测量外部轮廓,以提取平均轮廓和特征尺寸。结果表明,头部绕其轴线旋转和横向倾斜会影响焊珠的高度、宽度和不对称性。
摘要。不同的几何方法,以对称正定定义(SPD)矩阵的形式分析和处理数据的几何方法对包括计算机视觉,医学成像和机器学习在内的众多领域具有显着的成功应用。此类应用的主要几何范式由与高度和高维度相关的光谱计算相关的一些riemannian几何形状组成。我们提供了一个可扩展的几何框架的途径,以基于半概括的希尔伯特和汤普森的几何形状,基于极端概括的特征值的有效组合,以分析和处理SPD值的数据。我们详细探讨了基于汤普森几何形状的特定地理空间结构,并建立了与该结构相关的几个属性。此外,我们基于这种几何形状来定义SPD矩阵的新型迭代平均值,并证明了它的存在和独特性,用于给定的有限点集合。最后,我们指出并证明了许多所满足此均值的理想属性。
• Min-K 微孔柔性材料封装在纺织品中,并缝合成隔热罩应用 • 关键数据记录器需要将 Min-K 微孔材料模制成特定几何形状 • Min-K 微孔刚性材料封装在模制金属中并进行接缝/点焊 • APU 排气、引气或除冰管道包裹在封装的 Min-K 微孔绝缘材料中,以保持空气热度并保护飞机部件
图 3:适用于 WAAM 构造的典型路径规划方法:a)均匀切片法与 5 轴打印相结合[16];b)均匀切片(不连续轨迹)与自适应切片法(连续轨迹)[64];c)针对更厚、更复杂几何形状的模块化路径规划[58](这些图片的转载许可已获得
电子异质结构的微图案化主要依赖于洁净室环境中的传统微加工技术,其多个步骤涉及电子材料的旋涂以及光刻和蚀刻步骤。 3 该技术耗时且昂贵,并且蚀刻步骤对于某些有机导体来说是决定性的。蚀刻剂和抗蚀剂的残留物也会影响生物相容性。此外,很难在任意基板(例如柔性材料)上进行光刻。另一种不涉及微加工的技术是印刷,例如喷墨 4 或丝网印刷。 5 对于丝网印刷,必须为网格开发具有特殊流变性质的油墨。在喷墨打印头中,胶体颗粒的油墨经常会堵塞喷嘴。更成问题的是,很难使用任何加法印刷方法制造具有多种材料堆叠的复杂几何形状,因为添加来自水的油墨会溶解并改变之前的层。 3D 可打印 PEDOT:PSS 墨水已开发用于与其他非导电可打印材料结合形成复杂几何图形,但这些过程依赖于耗时的机制,例如低温冷冻、冻干和干退火。6
• 无 e-flash → e-flash 在 ~20nm 以下不可用 • 高温 (>125 ○ C) → DRAM 存在问题 • e-RAM 在较小几何尺寸下价格昂贵(更昂贵的晶圆上的面积有时会增加) • 多核现已成为常态 • 旧式 NVM(xSPI-NOR)无法满足读取性能要求(启动时间、XiP) • 我们有机会!(高吞吐量/低延迟分立式 NVM 存储设备)
