上一代太空级 FPGA 的制造工艺采用了更大的结构几何形状,专注于缓解单粒子翻转 (SEU),并采用了三倍寄存器和双互锁存储单元等强化方法。该工艺的一个优点是,更大的寄生布线电容本质上可以过滤辐射环境中固有的单粒子瞬变 (SET)。最新一代 FPGA 具有更高的逻辑密度和更小的互连。因此,由于太空中离子的电荷量影响敏感节点的可能性增加,SET 可能成为主要的单粒子效应 (SEE)。
摘要:氢键 (HB) 是生物系统中最丰富的基序。它们在确定蛋白质-配体结合亲和力和选择性方面起着关键作用。我们设计了两个对药物有益的 HB 数据库,数据库 A 包括约 12,000 个蛋白质-配体复合物,约 22,000 个 HB 及其几何形状,数据库 B 包括约 400 个蛋白质-配体复合物,约 2200 个 HB,它们的几何形状和键强度通过我们的局部振动模式分析确定。我们确定了七种主要的 HB 模式,可用作从头 QSAR 模型来预测特定蛋白质-配体复合物的结合亲和力。据报道,甘氨酸是供体和受体谱中最丰富的氨基酸残基,而 N–H · · · O 是数据库 A 中最常见的 HB 类型。HB 倾向于处于线性范围内,且线性 HB 被确定为最强的。HB 角在 100–110° 范围内的 HB 通常形成分子内五元环结构,表现出良好的疏水性和膜通透性。利用数据库 B,我们发现了 2200 多种蛋白质-配体 HB 的广义 Badger 关系。此外,每种氨基酸残基和配体功能团之间的强度和出现图为新颖的药物设计方法和确定药物选择性和亲和力提供了极具吸引力的可能性,它们也可作为命中到先导化合物过程的重要工具。
这种观点回顾了空间的基本物理 - 在各种媒体中很重要的电荷相互作用:真空间隙,气隙,液体和固体(包括量子材料)。它概述了自先前关于二极管物理学的评论论文以来的关键和最新发展[Zhang等。应用。物理。修订版4,011304(2017)]特别强调了空间的各个理论方面 - 电荷有限电流(SCLC)模型:纳米级,时间依赖性和瞬态行为的物理学;高维模型;和电子发射机制和材料特性之间的过渡。尽管许多研究集中在稳态SCLC上,但快速时间电脉冲,高频微波炉和Terahertz源的重要性日益增加,以及超快激光器在时间依赖于SCLC的理论研究中进行了研究。我们特别关注最近在离散粒子效应,时间现象,依赖于SCLC的时间依赖的光发射和交流光束载荷的研究上。由于物理大小和复杂的几何形状的减少,我们报告了多维SCLC的最新研究,包括有限的粒子效应,突出的SCLC,外来几何形状的新技术和分数模型。由于使用SCLC模型确定有机材料的迁移率的重要性,本文显示了SCLC模型在经典块状固体与最近的二维(2D)DIRAC材料之间的过渡。接下来,我们描述了SCLC在纳米二极管中的一些选定应用,包括纳米级真空通道晶体管,微等化晶体管,热能能转换器和多缸。最后,我们通过强调SCLC的理论建模和应用中的未来方向来得出结论。
集成的光子学促进了可扩展,节能的高性能设备的开发,并通过将各种被动和主动的光学组件集成到单个平台上,具有小脚印。这可以改善用于数据通信,传感,成像和量子信息处理的光学系统的性能和稳定性。由这些应用驱动,绝缘子(LNOI)上的薄膜锂(TFLN) / Niobate上的硅锂由于其高的非线性和电磁性能而成为强大的材料平台[1]。薄膜锂锂波导的高模态限制允许具有小弯曲半径的紧凑装置[2]。LNOI是有效的非线性设备[2-6]和快速电磁调节器[7 - 12]的合适候选者。低损坏波导通道可以预期与未来的高性能光子设备高度相关。,非结构化的薄膜材料具有内在的损失(0.2 dB / m [13]),它们远高于大量氯硝基锂的水平,这可能是由于制造过程中造成的离子植入损伤的结果[13]。由这些薄膜板制成的结构化通道表现出更高的衰减,主要是由粗糙的侧壁引起的。为了减轻这种效果,可以用诸如SIO 2之类的材料来覆盖该设备,以减少折射率对比度,可以通过调整制造过程来降低粗糙度,或者可以通过接受多模型的多模式spaveguide Geometries来减少光学模式的重叠[14]。使用这些方法在2023年已证明了1550 nm左右的最低传播损失1 dB / m [15]。低损失被认为是量子光学[16],单个光子处理[17]或光学量子计算[18]的情况下特别是必不可少的。理解这些系统的局限性至关重要,因此,对建模的技术也很重要,在这些领域中很重要。在影响综合光子电路功能的各种损失来源之间
3D ED的概念基于记录一系列2D电子衍射模式(倾斜序列),同时在围绕初级角度计轴旋转晶体。该轴未与晶体的任何特定晶体学方向对齐。可以使用两种不同的数据收集几何形状:逐步采集,在锥形进动和连续旋转(后来重新命名为微型)中,这代表了一种“线性进动”的形式。当前,3D ED数据收集的研究主要侧重于开发在获取过程中减少电子剂量的方法,包括各种晶体跟踪策略。
过去几年,由于工件越来越复杂、小型化、使用新型复合材料以及公差越来越严格,航空航天和汽车工业中加工部件的质量变得越来越重要。这种趋势不仅对加工操作的改进产生了持续的压力,而且对零件清洁度的优化也产生了持续的压力。本文回顾了加州大学伯克利分校最近在这些领域所做的工作。其中包括:堆叠钻孔中毛刺形成的有限元建模;开发用于最小化曲面钻孔中毛刺的钻头几何形状;开发增强型钻孔毛刺控制图;研究面铣中的刀具路径规划;以及部件的清洁度和清洁度指标。
结论这项工作显示出令人鼓舞的初步结果,其原理具有零电容的CDIR可以成功读取单个光子,减少电容对于降低噪声并允许更快的吞吐量是有利的。带有和不含电容的4角CDIR读数的仪器表明,使用ML可以改善单个光子的空间重建。原则上已经证明了3 x 3 CDIR读数的证明,并将进行进一步的工作,以研究提高空间分辨率的准确性的可能性,使用波形的整合而不是峰。此外,还将评估其他几何形状,以优化读取电子和带宽。
FZJ-3 REKO-3 流动反应器 强制流动条件下的 H2 重组 FZJ-4 REKO-4(在建) 压力容器 自然流动条件下的 H2 重组 FZK-1 A1 容器 圆柱形容器 湍流燃烧和爆轰,机械结构完整性 FZK-2 A3 容器 圆柱形容器 湍流燃烧和爆轰,通风爆炸,H2 分布 FZK-3 A6 容器 圆柱形容器 湍流燃烧和爆轰,机械结构完整性 FZK-4 12 米爆轰管 (DT) 圆柱管 湍流燃烧、DDT 和稳态爆轰,化学动力学 FZK-5 流动测试室 (TC) 矩形室通风燃烧和爆轰;H2 分布,通风系统测试。 FZK-6 部分通风爆炸管 (PET) 带可变开口的圆柱管 通风爆炸,湍流。火焰传播、火焰加速和 DDT FZK-7 A8 容器 圆柱形容器 湍流燃烧和爆轰、通风爆炸、H2 分布 FZK-8 爆炸弹 球形容器 可燃性极限、最小点火能量、层流火焰速度、化学 FZK-9 HyJet 水平/垂直氢气喷射 加压容器中的氢气释放、氢气浓度和 GC-1 168 m³ 开放式几何结构(内部有障碍物) 爆炸容器在开放、拥挤的几何形状中的爆炸 GC-2 1:3.2 比例海上模块爆炸容器在真实几何形状中的通风爆炸
具有周期性微观结构的构建的细胞材料(ACM)通常是在通过增材制造(AM)技术获得的高性能组件中构建的,这是由于其高特定强度和良好的效果。ACM也用于用于较高的表面与质量比以方便利用以增强传热的方法。在这项工作中,提出了一种数值方法,以预测AM获得的ACM的有效疗法电导率(ETC)。该模型基于一般数值均质化方案和对ACM的代表体积元素(RVE)的明确描述。数值分析已经对31 rves的几何形状进行:结果表明,ACM的宏观等在很大程度上取决于RVE的相对密度和几何特征。此外,从rves几何形状的数据库开始,选择了七个配置来设计分级ACM,通过计算机辅助设计与设计兼容的拓扑优化方法基于非均匀理性基础样条型样条超曲面以代表伪型密度纤维,并具有众所周知的固体同位素性材料,并具有损失的方法。尤其是,SIMP方法中使用的惩罚定律被基于物理的惩罚方案取代,该方案通过插值每个RVE拓扑的均质化结果和合适的后加工阶段,以从优化过程的结果中恢复分级ACM而不是结构的分布。在从文献中提取的2D和3D基准问题上显示了所提出方法的效果。
有机电化学晶体管(OECTS)将离子转换为电信号,这使它们成为广泛的生物电子应用的有前途的候选人。,尽管他们承诺,但仍未完全了解其设备几何形状对性能的影响。在此,将两个不同的设备几何形状(顶部接触和底部接触OECT)根据其接触性,可重复性和开关速度进行比较。表明,底部接触设备的切换时间更快,而其顶部接触式对应器在略有降低的接触抗性和增加的可重复性方面表现出色。讨论了速度和可重复性之间这种权衡的起源,该速度和可重复性之间的权衡为特定应用程序提供了优化指南。
