1 南特大学医院颌面外科系,法国 44000 南特 2 CRCI2NA-南特-昂热癌症和免疫学研究中心,法国 44000 南特 3 图卢兹癌症生物库,图卢兹大学医院 IUCT Oncopole,法国 31100 图卢兹 4 UMR1246 SPHERE(以患者为中心的结果和健康研究方法),南特大学,法国 44000 南特 5 蒂莫内医院病理学系,法国 13005 马赛 6 里尔大学医院病理学系,法国 59000 里尔 7 南锡大学医院病理学系,法国 54000 南锡 8 科钦医院病理学系,法国 75014 巴黎 9 图尔大学医院病理学系,法国 37000 图尔 10南特大学医院骨科,44000 南特,法国 * 通讯地址:helios.bertin@chu-nantes.fr;电话:+33-(0)2-40-08-36-79;传真:+33-(0)2-40-08-36-68
1 Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany 2 Institute of Solid State and Materials Physics, TU Dresden, Haeckelstraße 3, 01069 Dresden, Germany 3 Institute of Physical Chemistry, TU Dresden, Haeckelstraße 3, 01069 Dresden, Germany 4 SLAC National Accelerator美国孟洛克公园,美国孟洛公园,美国美国5物理研究所,阿尔伯特·恩斯坦 - 斯特林大学。
大量积累的药物基因组学、化学基因组学和副作用数据集为药物反应预测、药物靶标识别和药物副作用预测提供了前所未有的机会。现有的计算方法将其范围限制在这三个任务中的一项,不可避免地忽略了它们之间的丰富联系。在这里,我们提出了 DrugOrchestra,这是一个深度多任务学习框架,可以联合预测药物反应、靶标和副作用。DrugOrchestra 利用预先训练的基于分子结构的药物表征来连接这三个任务。DrugOrchestra 不是直接对单个任务进行微调,而是使用深度多任务学习通过同时对药物反应、靶标和副作用预测进行微调来获得基于表型的药物表征。通过将这三个任务结合在一起,DrugOrchestra 能够仅通过了解其分子结构来预测看不见的药物。我们通过整合三个任务中的 8 个数据集,构建了一个包含超过 21,000 种药物的异构药物发现数据集。与在单个任务或单个数据集上训练的方法相比,我们的方法获得了显着的改进。我们进一步揭示了 8 个数据集和 3 个任务之间的可迁移性,为理解药物机制提供了新的见解。关键词:多任务学习、药物靶标预测、药物副作用预测、药物反应预测可用性:https://github.com/jiangdada1221/DrugOrchestra
* 通讯作者电子邮箱:walink@iib.uam.es (WL);romano.silvestri@uniroma1.it (RS)。本文发表于《药物耐药性更新》(Elsevier,2021 年),第 100788 页。DOI:10.1016/j.drup.2021.100788 此版本为作者版本。摘要许多癌症患者经常对抗癌治疗没有反应,因为治疗耐药性是治愈癌症治疗的主要障碍。因此,确定耐药性的分子机制具有至关重要的临床和经济意义。基于对癌症的分子理解的靶向疗法的出现可以作为克服耐药性策略的模型。因此,鉴定和验证与耐药机制密切相关的蛋白质代表了一条通往创新治疗策略的道路,以改善癌症患者的临床结果。在这篇综述中,我们讨论了新兴靶点、小分子疗法和药物输送策略,以克服治疗耐药性。我们专注于基于转录因子、假激酶、核输出受体和免疫原性细胞死亡策略的合理治疗策略。从历史上看,未配体的转录因子和假激酶被认为是不可药用的,而通过抑制核输出受体 CRM1 来阻断核输出则被认为具有高度毒性。最近成功抑制 Gli HIF-1α、HIF-2α 并重新激活肿瘤抑制转录因子 p53 和 FOXO 说明了这种靶向方法的可行性和强大性。同样,在调节与治疗耐药性有关的假激酶蛋白(包括 Tribbles 蛋白家族成员)的活性方面也取得了进展。另一方面,Selinexor 是一种 CRM-1 的特异性抑制剂,CRM-1 是一种介导富含亮氨酸的核输出信号货物运输的蛋白质,已知是药物耐药性的驱动因素,它代表了抑制核输出作为克服治疗耐药性的可行策略的概念验证。
关于NeoGap Therapeutics NeoGap Therapeutics是一家瑞典临床阶段生物技术公司,致力于使用患者自己的细胞开发个性化的癌症免疫疗法。该疗法基于公司的两种技术Pior®和Epitcer®。pior®是复杂的软件,它使用来自患者和机器学习算法的DNA测序数据来选择肿瘤特异性突变。然后,Epitcer®用于繁殖可以识别和攻击所选肿瘤特异性靶标的T细胞。neogap位于斯德哥尔摩的癌症中心Karolinska。要了解有关NeoGap及其尖端研究的更多信息,请访问该公司的Neogap.se网站,并在LinkedIn上关注Neogap。
因素。这种修饰的一个关键目标是 NF-κB 转录因子的 c-Rel 亚基,其 O-GlcNAc 糖基化增强了 Treg 介导的免疫抑制所必需的 NF-κB 靶基因的表达。Treg 细胞中 Glut3 的缺失会降低 c-Rel O-GlcNAc 糖基化,从而减少免疫抑制并导致肿瘤生长减少。这些结果表明,开发针对 Treg 细胞中的 GLUT3 或 O-GlcNAc 糖基化途径的新药可以通过增强肿瘤微环境内的抗肿瘤免疫力来改善癌症患者的预后。图片来源:POSTECH
•针对艾滋病毒,病毒性肝炎和性传播感染的全球卫生部门战略,2022年至2030年:进度和差距的报告2024,第二版。日内瓦:世卫组织,2024年。(实施有关艾滋病毒,病毒性肝炎和性传播感染的全球卫生部门战略,2022-2030:进度和差距的报告2024,第二版)
2。要实施NPP并在小型企业计划中取得前进的承诺,所有中央政府部门(包括执行机构和非部门公共机构(NDPBS)(NDPBS))必须设定三年的直接支出目标,以实现SME(2025年4月1日)的直接支出(从2025年4月1日起),并在2026年4月1日(从2026年4月1日开始)进行直接支出的目标。
Super Micro Computer,Inc。(SMCI)是高性能,高效率服务器技术和创新的全球领导者,宣布其在2032年减少温室气体(GHG)排放的近期目标已由科学基于科学的Targets Initiative(SBTI)批准。通过设定1.5°C的目标,Supermicro将其温室气体排放量与最新的气候科学保持一致,并通过其CDP披露(以前是碳披露项目),每年报告其进度和状态。
在其付款要求中,芬兰已确认,与以前令人满意的里程碑和目标有关的措施尚未逆转。委员会没有相反的证据。这包括审计和控制里程碑M72(用于审核和控制的存储库系统:用于监视RRF实施的信息),以及在首次付款请求下进行的审计和控制的承诺,以确保持续遵守这一里程碑及其根据融资协议遵守这一里程碑及其义务。这项承诺涉及通过自动和手动检查实施质量控制程序,采用和传播指南,以实施数据收集和存储,并为实施机构的工作人员提供定期培训。财政部已签署并分发给实施机构的新更新指南。基于对承诺和所提供的证据的评估,委员会认为芬兰已确保遵守Milestone M72及其根据融资协议所承担的承诺的义务。收到付款请求后,委员会已经以初步的基础评估了相关里程碑和目标的令人满意的实现。基于芬兰提供的信息,委员会对所有27个里程碑和目标的满意实现进行了积极的初步评估。作为本付款请求的一部分进行积极评估的里程碑和目标,在实施芬兰的回收和弹性计划方面显示了重要步骤。他们特别强调了关键政策领域的改革势头的延续。这包括《修订的气候法》的生效,逐步淘汰化石油供暖的行动计划以及法律对公共就业和商业服务的生效,对乔布斯求职者服务过程的北欧就业服务模型进行了规范。里程碑和目标还确认了完成与微电子项目有关的投资项目的进展,并授予了本地和国家研究基础设施的更新和开发。
