在套细胞淋巴瘤 (MCL) 中,巨噬细胞在肿瘤微环境 (TME) 中的作用最近受到关注,因为它们会影响预后和治疗反应。尽管 MCL 肿瘤组织中的巨噬细胞绝对数量很少,但最近的研究结果显示巨噬细胞水平与预后之间存在关联,这与其他淋巴瘤亚型中观察到的趋势一致。M2 样巨噬细胞由 CD163 等标记物识别,有助于血管生成和抑制免疫反应。接受化学免疫疗法和靶向治疗的 MCL 患者的临床试验强调了高水平 M2 样巨噬细胞的不利影响。来那度胺等免疫调节药物可降低 MCL 相关 CD163 + 巨噬细胞的水平并增强巨噬细胞的吞噬活性。类似地,针对 CD47“别吃我”信号的临床方法与抗 CD20 抗体利妥昔单抗相结合,可增强巨噬细胞活性和对 MCL 肿瘤细胞的吞噬作用。嵌合抗原受体 (CAR) T 细胞等细胞疗法已显示出良好的前景,但仍存在各种挑战,这导致人们对 CAR-巨噬细胞 (CAR-M) 产生了潜在兴趣。当巨噬细胞被招募到 TME 时,它们具有吞噬功能和对微环境变化的反应性等优势,表明当 CAR T 细胞疗法在复杂的 MCL 治疗环境中失败时,它们有可能成为可操纵和可诱导的替代方案。
这是一部关于一位迷人军官的传记,也是所有飞行员的必读书籍。它将吸引各种各样的兴趣。机组人员和未来的战斗机飞行员将喜欢阅读极具竞争力的“40 秒博伊德”的书籍,他在内利斯战斗机武器学校保持了在 40 秒内击败所有对手的惊人记录。具有技术偏见的读者会喜欢博伊德,他是一名研究飞行员,开发并记录了第一本美国空军战斗机战术手册,然后是空中机动理论(违背了他的指挥系统的明确意愿),并将他的想法提交给美国空军规划人员,使 F-16 等战斗机获得空中优势。那些研究领导力的人会发现博伊德是一名狂热的特立独行者,他要求并得到了他精心挑选的助手的坚定忠诚和承诺。最后,天马行空的思想家们会欣赏博伊德这位富有远见的人,他研究战略和战争,提出了一种制胜理论,这种理论帮助改变了我们对空中力量使用的看法,推动了美国海军陆战队的机动战理论,并且仍然在推进商业大师们的竞争理念。
摘要:本文考虑了第五代飞机技术特性对指挥和控制(C2)可能产生的一些影响。可能需要委托决策权以充分利用第五代战斗机的隐身和态势感知能力。我们建议,在将决策权委托给飞行员时,例如目标交战权,指挥官需要权衡共享和不共享信息的成本和收益。委托的好处以及暂时放弃信息共享,可能会以战略控制权减少为代价。委托可能涉及暂时放弃与飞行员沟通的机会。在这种情况下,任务可能在战术上得到更好、更快的解决。因此,在做出授权决策时,指挥官可以从正式框架中受益,该框架系统地检查影响授权决策的已知因素,并清楚地描述与战斗机飞行员的沟通过程。这可以缩短决策时间,同时减少因忽略决策中的关键因素而产生的偏见。基于这样的框架,我们讨论了对空军和联合 C2 的影响。
不列颠之战 75 年后,人们仍然认为这场战役的胜利归功于“道丁系统”的创新,该系统整合了雷达和八枪战斗机,以及皇家空军战斗机飞行员的技能和勇气。本文探讨了 1917-18 年伦敦防空区的设计、1922-23 年本土防卫空军的组建以及 1934 年英国防空部队为应对德国而进行的调整,以表明由于政治需要、国防战略和皇家空军的机构防空专业知识的一致性,英国在 1922 年至 1940 年间不断发展战略防空。虽然历届空军参谋长都倾向于战略轰炸,但皇家空军成立于 1918 年,旨在防止德国袭击伦敦,拥有许多防空专家和拥护者。因此,虽然战略轰炸在很大程度上未经证实,其影响被夸大了,但防空是基于第一次世界大战的教训,并越来越多地基于科学、作战研究和作战评估。此外,历届英国政府(不仅仅是张伯伦政府)都奉行深思熟虑的防御战略,认识到英国在轰炸机面前的战略脆弱性和公众焦虑,同时寻求在长期战争中利用英国的技术、工业和空中力量,避免血腥的大陆战争。这种结合确保了不列颠战役的胜利,但也导致了法国的沦陷,没有法国的沦陷,不列颠战役就不会发生。
1 《涉及中华人民共和国的军事和安全发展》(2020 年),国防部国防部长办公室,第 25 页;《涉及中华人民共和国的军事和安全发展》(2021 年),国防部国防部长办公室,第 24-29 页。
“由于消防员接触了这种化学剂,我们检查了诊断为诊断为消防员的人的神经胶质瘤脑肿瘤的突变特征,”耶鲁大学公共卫生学院的医学博士伊丽莎白·B·克劳斯(Elizabeth B. Claus)博士伊丽莎白·B·克劳斯(Elizabeth B.
演讲者:HeribertoFernándezJaramillo博士在澳大利亚大学(Austral de Chile)训练,并获得了微生物学和免疫学硕士学位,并获得了科学博士学位,并在巴西圣保罗联邦大学获得了微生物学。他在弯曲杆菌领域进行了广泛的研究工作。
在JEC世界2025年,Arkema将推出针对工业和环境过渡挑战的创新。将引入用于电池回收和维修的新解决方案,而由Elium®树脂制成的生态设计的垂直风力涡轮机刀片将突出循环经济中的进步。Arkema还将介绍RILSAN®聚酰胺11,这是一种100%基于Bio的复合材料解决方案,以及UDX®磁带,将碳纤维和基于生物的热塑性聚合物结合在一起。此外,海科帕斯航空航天演示器将展示下一代热塑性复合材料的性能,以及来自PI高级材料的聚酰亚胺膜。Bostik今年彻底改变了工业和流动性的拆卸,揭幕了Prep DB,该底漆旨在应对车辆维修和寿命终止回收的挑战。作为开放创新策略的一部分开发,这种热激活技术使键可以破裂,从而可以拆卸组件而不会损害周围材料。与Zebra Project的JEC奖可再生能源类别提名的复合材料中的开创性循环,Arkema'sElium®树脂正在通过启用复合材料回收来推动循环经济。作为JEC创新奖的决赛入围者,Northern Light Composites将展示一个由Arkema的展台上的Elium®树脂制成的生态设计的垂直风力涡轮机叶片。进一步采取了这一承诺,Arkema将推出一部独家电影,重点介绍了首个树脂回收的工业设施的推出。通过与综合回收,贝内多,维奥利亚,欧文斯·康宁和乔马拉特的战略合作伙伴关系,使这一突破成为可能,将综合回收转化为工业且经济上可行的现实。推动高性能和可持续性RILSAN®聚酰胺11的边界用于生产100%基于生物的复合材料,用于运输,航空航天,体育和消费品。具有优化的熔点,RILSAN®聚酰胺11可以轻松地使用自然纤维(例如亚麻,大麻和竹子)而不会降解。聚酰胺11和天然纤维均来自可再生资源,使这些复合材料与传统材料相比更具可持续性和可回收性。
愿景,深度学习以及机器人和其他技术学,可能有助于减轻对更可持续的农业系统的需求。但是,传统的工业机器人不是为典型农业生态系统的复杂环境而设计的。农业领域中最关键的害虫控制问题之一是杂草控制,这是目前是一项劳动力的任务。因此,自动化杂草控制系统的需求很大。蔬菜场中的机器人内部杂草控制需要机器视觉,作物定位,决策和代理系统。缺乏可靠的技术来检测,定位和分类杂草和作物植物是开发针对特种蔬菜等特种耕作的完全自动化和全面的杂草管理系统的主要技术障碍。在杂草密度中等至高杂草密度的杂草田中,现有的机器人除草机变得混乱,因为它们无法解释过去的几十年,研究人员一直在尝试各种方法来实时区分杂草的杂草 - 杂草 - 杂草浓度。Lee等。 (1999)提出并开发了一个实时机器视觉系统,该系统以3 fps的速度区分了番茄植物和杂草,代表114毫米101毫米的种子线面积,允许杂草控制系统以1.20 kmh 1的速度传播。 番茄植物在75.8%的时间内正确识别,低于所需的准确性。 Lamm等。 (2002)开发了一种基于Lee El al的棉花的精确杂草映射的系统。 Slautter等。Lee等。(1999)提出并开发了一个实时机器视觉系统,该系统以3 fps的速度区分了番茄植物和杂草,代表114毫米101毫米的种子线面积,允许杂草控制系统以1.20 kmh 1的速度传播。番茄植物在75.8%的时间内正确识别,低于所需的准确性。Lamm等。(2002)开发了一种基于Lee El al的棉花的精确杂草映射的系统。Slautter等。的(1999)原型,并达到了88%的歧视精度。(2008)开发了一种多光谱的机器视觉识别系统,以对杂草的生菜作物分类,并获得90.3%的精度。Haff等。 (2011年)后来提出了一个基于X射线的作物检测系统,该系统达到了90.7%的tomatoplantsatthetthervavel speedof1.6kmh 1的检测准确性。 zhangetal。 (2012)提出了一种高光谱成像系统,以实时识别作物植物并将其与杂草区分开。 该系统在区分杂草的作物方面达到了95.8%的准确性。 有许多关于AI,机器学习,深度学习技术的研究工作,以对杂草进行分类(Bah等,2018; Osorio等,2020)。 Osorio等。 (2020)使用多光谱摄像机在生菜场和应用的SVM(支撑矢量机),Yolov3(您只看一次V3)和掩盖r e cnn(基于区域的综合神经网络)中的图像,以在杂草和作物之间进行分类,并在79%,89%,89%,89%,89%,89%,89%,89%,89%的差异Haff等。(2011年)后来提出了一个基于X射线的作物检测系统,该系统达到了90.7%的tomatoplantsatthetthervavel speedof1.6kmh 1的检测准确性。zhangetal。(2012)提出了一种高光谱成像系统,以实时识别作物植物并将其与杂草区分开。该系统在区分杂草的作物方面达到了95.8%的准确性。有许多关于AI,机器学习,深度学习技术的研究工作,以对杂草进行分类(Bah等,2018; Osorio等,2020)。Osorio等。(2020)使用多光谱摄像机在生菜场和应用的SVM(支撑矢量机),Yolov3(您只看一次V3)和掩盖r e cnn(基于区域的综合神经网络)中的图像,以在杂草和作物之间进行分类,并在79%,89%,89%,89%,89%,89%,89%,89%,89%的差异
本世纪正在呈现全球气候变化,并在环境条件下发生了重大变化,这可能会影响几种生物体的生长,发育和生存。反过来,这种影响会影响地球上生物的食物,饲料和饲料的可用性。反复发生的环境压力,例如热,干旱,冷,昏昏欲睡等。可能会造成巨大的收益率损失,对农作物的挑战以及对可持续粮食安全的担忧。在压力条件下基因表达的调节是植物为应对环境应力而采用的分子策略之一。microRNA(miRNA)在通过翻译抑制或由于mRNA的裂解而在控制基因表达方面起重要作用。此外,miRNA正在成为调节发育过程(包括生产力/产量以及对植物压力的反应)的较新候选者。通常,miRNA的靶标是转录因子和与胁迫反应相关的基因,从而影响植物的适应性潜力。miRNA(miR160-arf,miR159-myb和miR169-nFya)的组合参与了调节植物干旱下基因表达的调节。这些干旱响应性的miRNA被证明具有影响生理,生化和分子反应的影响,并用作作物植物基因操纵的候选物,以增强胁迫弹性。本综述提供了对miRNA的见解,这是一种应力,在植物(尤其是大米中)对环境压力的弹性中起着重要作用。据报道,miRNA可以控制关键的生物学过程,例如呼吸,光合作用,信号通路,衰老等,尤其是在压力条件下。已经讨论了利用基于miRNA的策略进行改进的一些局限性以及未来的观点。这些可能有助于理解miRNA的功能,这是基因调节网络的重要组成部分之一,这将促进农作物的遗传改善,从而获得多种应力并产生潜力。