INTRODUCTION Rhizosphere bacteria that positively influence plant growth and productivity of commercially important crops are commonly referred to as Plant Growth Promoting Rhizobacteria (PGPR) and include bacteria of the genera Azotobacter, Azospirillum , Arthrobacter, Bacillus, Agrobacterium, Rhizobium, Flavobacterium, Burkholderia, Enterobacter,克莱伯斯ella,假单胞菌,xanthomonas和serratia。根渗出液的分泌有助于调节微生物动力学及其与植物的相互作用,进而在促进植物生长中起着重要作用。此外,根际中的这种共生相关性还赋予对由真菌,细菌和病毒病原体引起的各种疾病的保护。这些细菌直接通过使用刺激性生长素和细菌的组合或通过刺激性生长素和细菌的形式组成的刺激性的生长素,gibberellins和componial compan和compoa,并通过刺激性的生产力和细菌来通过刺激性的生长蛋白和胞质的组合来直接影响植物的生长和分泌。 N.I.K.al-Barhawee和F.A.al-Wazzan。2025。从新分子表征的根瘤菌菌株中产生吲哚-3-乙酸的估计。农业科学全球创新杂志13:85-94。[2024年9月2日收到; 2024年10月6日接受;出版于2025年1月1日]
编者按:众所周知,植物会与环境中存在的不同生物和非生物因子相互作用,形成有益的互利共生。在各种因子中,植物与微生物的相互作用是具有全球影响的重要相互作用之一。微生物与植物的地下(根际)、地上(叶际)和内部(内生菌)部分相互作用,这些相互作用在彼此的生存中发挥着不同的重要作用。在所有内生菌中,已知相互作用为其宿主带来更大的益处,尤其是在压力(生物和非生物)条件下。已知内生微生物会与地球上现存的每一种单株植物相互作用,它们存在于整个植物甚至种子中。各种微生物群,如古菌、细菌和真菌都被认为是内生菌。迄今为止,内生微生物群落已发现属于广古菌门、酸杆菌门、拟杆菌门、嗜热奇球菌门、芽孢杆菌门、假单胞菌门、疣微菌门、子囊菌门、担子菌门和毛菌门的微生物种群。内生微生物通过各种机制保护植物,例如 N2 固定、铁载体产生、磷溶解、植物激素产生(生长素、细胞分裂素和赤霉素)、氨和氢氰酸产生。
单位-VI:植物的内部组织:开花植物的组织学和解剖学:组织 - 类型,结构和功能;分生物:永久组织 - 简单而复杂的组织。组织系统 - 类型,结构和功能;表皮,地面和血管组织系统。二核和单子叶植物的解剖结构 - 根,茎和叶,双子茎和双子根的二级生长。单位-VII:植物生态学:生态适应,继任和生态服务:简介。植物群落和生态适应:氢植物,叶肉和叶叶植物。植物继承。生态服务固定,氧气释放以及如何维持生态功能。UNIT-VIII: PLANT PHYSIOLOGY: Transport in Plants : Means of Transport- Diffusion, Facilitated Diffusion, Passive symports and antiports, Active Transport, Comparison of Different Transport Processes, Plant-Water Relations- Water Potential, Osmosis, Plasmolysis, Imbibition, Long Distance Transport of Water- Water Movement up a Plant, Root Pressure, Transpiration pull, Transpiration- Opening and Closing of Stomata, Transpiration and光合作用 - 矿物营养素的折衷吸收和运输 - 矿物离子的摄取,矿物离子的易位,韧皮部的运输:从源到水槽的流动 - 压力流量或质量流量假设。酶:化学反应,酶转化,酶作用的性质,影响酶活性,温度和pH值的因素,底物的浓度,酶的分类和命名法,副因素。矿物质营养:研究植物的矿物质需求,必不可少的矿物元素 - 必不可少的标准,大量营养素,微量营养素,宏观的作用,宏观和微观 - 养分 - 基本元素的缺乏症状,微生酸的毒性,微量营养素的毒性,微量营养素的毒性,元素吸收的机制,肯定的元素,土壤的吸收机制 - 土壤的综合元素 - 土壤疾病,疾病 - 土壤的综合元素,源于土壤的疾病,源自氮循环,生物氮固定,共生氮固定,结节形成。Photosynthesis in Higher Plants : Early Experiments, Site of Photosynthesis, Pigments Involved in Photosynthesis, Light Reaction, The Electron Transport-Splitting of Water, Cyclic and Noncyclic Photo-phosphorylation, Chemiosmotic Hypothesis, Biosynthetic phase- The Primary Acceptor of CO2, The Calvin Cycle, The C4 Pathway, Photorespiration, Factors affecting Photosynthesis.植物的呼吸:细胞呼吸,糖酵解,发酵,有氧呼吸 - 三羧酸循环,电子传输系统(ETS)和氧化磷酸化,呼吸平衡表,两性途径,两性途径,呼吸商,呼吸商。植物生长和发育:植物生长,生长阶段,生长速率,生长条件,分化,去分化和重新分化,发育,植物生长,调节剂 - 植物生长调节剂的生理影响,生长素,gibberellins,gibberellins,cytokinins,entokinins,ethytokinins,ethylene,乙烯,超酸种子病毒不相同,光疗法,veroperiodism,Veroperionisp。
csir净生活科学问题与解决方案Q1。关于植物植物植物(PHY),蓝细菌植物色素1(CPH1)和细菌植物色素样蛋白(BPHP),以下哪种陈述中的哪一种是不正确的?(a)PHY在C末端部分中有两个PRD域。(b)CPH1和BPHP在N末端部分具有组氨酸激酶结构域。(c)GAF结构域存在于PHY,CPH1和BPHP的N末端部分中。(d)形成连锁的半胱氨酸残基位于诸如PHY和CPH1之类的规范植物色素中的GAF结构域中。Q2。 以下哪一项称为结核酸? (a)甲基甲酸酯(b)顺式 - 果酮(C)jasmonoyl-1-β-葡萄糖(d)12-羟基 - (+) - 7- iSojasmonate Q3。 大米,SD-1的主要半障碍基因中的缺陷导致具有短而厚的浮雕和改善的住宿耐药性的品种。 该基因与以下哪种植物素有关? (a)gibberellins(b)脱甲酸(c)茉莉酸(d)水杨酸Q4。 在模型植物拟南芥中,蛋氨酸是生物合成中的前体氨基酸:(a)生物碱(b)葡萄糖醇酸盐(c)苯酚(C)酚(d)萜类化合物Q5。 在每个正常的人类红细胞中大约存在多少血红蛋白? (a)19 pg(b)29 pg(c)39 pg(d)49 pg Q6。 涉及以下涂层坑的颈部捏合以形成突触前末端的内吞囊泡的夹克中的哪一项? (a)Synaptojanin(b)AP2(C)网格蛋白(D)DynaminQ2。以下哪一项称为结核酸?(a)甲基甲酸酯(b)顺式 - 果酮(C)jasmonoyl-1-β-葡萄糖(d)12-羟基 - (+) - 7- iSojasmonate Q3。大米,SD-1的主要半障碍基因中的缺陷导致具有短而厚的浮雕和改善的住宿耐药性的品种。该基因与以下哪种植物素有关?(a)gibberellins(b)脱甲酸(c)茉莉酸(d)水杨酸Q4。在模型植物拟南芥中,蛋氨酸是生物合成中的前体氨基酸:(a)生物碱(b)葡萄糖醇酸盐(c)苯酚(C)酚(d)萜类化合物Q5。在每个正常的人类红细胞中大约存在多少血红蛋白?(a)19 pg(b)29 pg(c)39 pg(d)49 pg Q6。涉及以下涂层坑的颈部捏合以形成突触前末端的内吞囊泡的夹克中的哪一项?(a)Synaptojanin(b)AP2(C)网格蛋白(D)Dynamin
The rational use of biologically active substances or plant growth stimulants from natural materials like seaweed is one of the most promising trends in agriculture, as seaweed is considered a safe and sustainable bio stimulant for improving plant growth, particularly under abiotic stress due to its high content of Cytokinin's, auxins, gibberellins, amino acids, phytohormones, Osmo protectants, mineral nutrients, and抗菌化合物。当前的工作探讨了海藻提取物对不同作物的影响,它们在植物中起的功能作用以及海藻提取物在综合作物管理系统中的潜在价值对可持续作物生产。各种元素会影响农业中使用的海藻提取物的有效性,例如海藻,制造方法和浓度,而应用技术被认为是海藻提取物在改善植物生长中有效性的决定因素。海藻提取物以两种基本方式合成:通过物理技术和化学方法。使用碱提取是最商业的方法,在维持生物活性成分方面非常有效。许多报告已经证实了海藻提取物在改善植物生长方面的疗效及其在改善种子发芽,改善根系的生长,提高幼苗生存率,提高幼苗生长和在非生物胁迫下提高植物的生长和生产力,并增强植物对病原体的耐药性。
联合国成员国在2015年采用的可持续发展目标(SDG)认识到需要可持续农业,这将使人类的生计和保护环境有益。随着对食品,饲料,饲料和生物燃料生产的需求继续加剧,气候变化的影响(SDG 17)和相关的环境因素仍然是农业的关注。在全球范围内,现代技术在农业中的应用,例如精确耕作技术(例如,GPS引导的拖拉机,无人机和传感器),生物技术(包括遗传工程和分子育种),人工智能(AI)和Robotics和Robots在高度的研究中遇到了重要的研究,并且是多元化的研究,并且是多样化的研究,并且是多元化的研究。营养丰富的作物品种(Abiri等,2023; Ivezic ́等,2023)。例如,生物技术系统(例如使用植物激素在维持植物生产力中)在农业生产力中表现出巨大的潜力。植物激素,通常被视为植物生长调节剂(PGR),是关键信号分子,在有利且不利的条件下调节植物生理和生化过程(El Sabagh等,2022)。这些多样化的植物激素[ 2016)。
摘要:在大米中,半弱SM是最需要的特征之一,因为它促进了更好的产量和耐药性。Here, semi-dwarf rice lines lacking any residual transgene-DNA and o ff -target e ff ects were generated through CRISPR / Cas9-guided mutagenesis of the OsGA20ox2 gene in a high yielding Basmati rice line, and the isobaric tags for relative and absolute quantification (iTRAQ) strategy was utilized to elucidate the proteomic changes in mutants.结果表明吉布林林(GA 1和GA 4)水平降低,植物高度(28.72%)和叶叶长度,而所有其他特征保持不变。OSGA20OX2表达得到了高度抑制,突变体表现出降低的细胞长度,宽度,并通过外源性GA 3处理恢复其植物高度。野生型和纯合突变系(GXU43_9)的比较蛋白质组学分别显示了588种蛋白质的水平,分别是273个上调和315个下调的水平。鉴定出的差异表达的蛋白质(DEP)主要富含碳代谢和固定,糖酵解 /糖糖异生,光合作用和氧化磷酸化途径。与生长调节因素(GRF2,GRF7,GRF9,GRF9,GRF11和GRF11)和GA(Q8RZ73,Q8RZ73,Q9AS97,Q69197,Q69VG1,Q69VG1,Q8LNJ6,Q8LNJ6,q8lnj6,q8lnj6,qy8lnj6,qy8lnj6,q55,在突变系中,脱离应激抗应激的蛋白5(ASR5)和脱落酸受体(PYL5)上调。我们将CRISPR / CAS9与蛋白质组学筛选整合为快速评估CRISPR实验结果的最可靠策略。
在水稻培养中,半枯萎和粘性质地的特征分别是优化产量潜力和晶粒质量的关键。Xiangdaowan(XDW)大米以其出色的芳香特性而闻名,由于其高的身材和高淀粉糖含量而面临挑战,导致住宿耐药性不佳和次优烹饪属性。为了解决这些问题,我们采用了CRISPR/CAS9技术来精确地编辑XDW大米中的SD1和WX基因,从而发展具有所需半昏迷和麸质特征的稳定的遗传纯合线。SD1-WX突变型线表现出降低的gibberellin含量,植物高度和淀粉糖含量,同时保持了几乎不会改变发芽率和其他关键的农艺性状。重要的是,我们的研究表明,外源性GA 3的应用通过补偿内源性Gibberellin的缺乏有效地促进了生长。基于此,开发了半昏昏欲睡的精英大米(Oryza sativa L.)线,对大多数农艺性状没有太大影响。此外,比较转录组分析揭示了差异表达的基因(DEG)主要与膜的锚定成分,过氧化氢分解代谢酶分解代谢酶活性,过氧化物酶活性,萜烯合酶活性和寄生虫相关。此外,将二萜类化合物的生物合成催化为gibberellins的生物合成富集并显着下调。这项全面的研究提供了一种有效的方法,可以同时提高水稻植物的身高和质量,为耐药和高质量的水稻品种的发展铺平了道路。
Parul Singh,Manish Bakshi和Anmol doi:https://doi.org/10.33545/26174693.2024.v8.i7d.1471摘要摘要全球可持续农业方法的扩展需求促进了对传统工厂增长调节器的基于工厂的替代方案的研究。传统的PGR虽然有效,但由于其合成成分以及残留污染的可能性,可以提供环境和健康危害。因此,将天然植物提取物作为一种对环境有益且环保的替代方案的好奇心增加。从各种植物来源产生的植物提取物包含各种生物活性化学物质,例如植物激素,酚类,类黄酮和生物碱,这些化学物质会影响植物的生长和发育。从海藻,辣木和印em等植物中提取的提取物在提高发芽率,提高根系结构和增加压力抗性方面表现出了希望。这些提取物是通过模仿或改变天然激素(如生长素,gibberellins,cytokinin和bubscisic Acid)的作用来起作用的。此外,它们还提供了其他好处,例如抗菌能力,可以降低植物疾病的发生和抗氧化活性,从而提高植物对环境压力源的耐受性。植物提取物作为合成PGR的天然替代品具有巨大的希望,为提高植物的生长和生产力提供了可持续的解决方案。由于其具有遗传均匀性的父植物克隆的能力而受到高度重视(Abhinav等,2016)[2]。,2013年)[20]。尽管在标准化和大规模应用方面仍然存在挑战,但持续的研究和创新可以释放其全部潜力,从而有助于更可持续的农业实践并改善环境健康。关键词:生物活性化学物质,环保化学物质,植物提取物,海藻,可持续的耕作引入植物之间的茎切割传播是园艺和农业中最基本的方法之一,可快速增加父植物的数量。剪切很难在没有生长兴奋剂的帮助的情况下开发,并且通常需要大量的努力(Uddin等,2020)[49]。生长素可促进血管组织分化,抑制分支分化,并抑制叶片中脱落层的产生。生长素是用于加快不定根发展的茎插条中最关键的激素之一(Sahin and Uysal 2018)[45]。生长素会影响根部发育并增强切割生根百分比(Ahmed等,2017)[3]。年轻的植物芽和叶子会产生天然的生长素,但是,插曲的成功生根需要合成生长素的应用,例如萘 - 乙酸(NAA)和吲哚-3-丁酸(IAA)(Galavi等人 然而,尽管合成生根激素的使用对环境,人类健康和经济限制的影响很高,但它们的使用却引起了许多问题(Dunsin等,2014)[11]。 ,而天然根刺激剂是生根园艺作物的安全且具有成本效益的方法。 它们对环保,可以替代合成植物生长激素。然而,尽管合成生根激素的使用对环境,人类健康和经济限制的影响很高,但它们的使用却引起了许多问题(Dunsin等,2014)[11]。,而天然根刺激剂是生根园艺作物的安全且具有成本效益的方法。它们对环保,可以替代合成植物生长激素。因此,植物提取物的使用被认为是一种避免使用合成激素的园艺作物的重要非化学方法(Rajan and Singh 2021)[39]。一些天然植物提取物是芦荟,椰子水,大蒜,柳叶提取物,海藻提取物,莫林加叶提取物,肉桂粉,姜和甘草(Khalid and Ahmed 2022; Aryan等,2023)[27,6]。它们含有生根激素,例如生长素,gibberellins,cytokinin,许多复杂成分,包括多糖,糖蛋白,酚类化合物,酚类,乙烯,脱甲酸,水杨酸,
番茄 (Solanum lycopersicum L.) 嫁接主要用于防止土传病原体的危害和非生物胁迫的负面影响,不过使用高活力砧木也可以提高产量和果实品质。在低养分投入农业的背景下,将优良品种嫁接到具有更高氮利用效率 (NUE) 的砧木上可支持直接的产量最大化策略。在本研究中,我们评估了使用过量表达拟南芥 (AtCDF3) 或番茄 (SlCDF3) CDF3 基因的植物作为砧木来提高低氮投入下嫁接接穗的产量,此前有报道称这些基因可提高番茄的 NUE。我们发现 AtCDF3 基因可诱导更多的糖和氨基酸产生,从而使生物量和果实产量在充足和有限的氮供应下都更高。相反,SlCDF3 基因没有发现积极影响。激素分析表明,赤霉素 (GA 4 )、生长素和细胞分裂素 (tZ) 可能参与 AtCDF3 对 N 的反应。这两个基因引发的不同反应可能至少部分与 AtCDF3 转录本通过韧皮部到枝条的移动性有关。在该嫁接组合的叶片中,我们持续观察到转录因子靶基因(如谷氨酰胺合酶 2 (SlGS2) 和 GA 氧化酶 3 (SlGA3ox))的表达较高,这些基因分别参与氨基酸和赤霉素的生物合成。总之,我们的研究结果进一步深入了解了 CDF3 基因的作用方式及其在嫁接方法中的生物技术潜力。