气候变化对东部伙伴地区和中亚地区的影响日益严重,气温创历史新高,干旱频发,冰川融化加速,洪水等气候相关灾害也造成了重大经济损失。解决这些环境威胁的紧迫性显而易见,因为该地区与世界其他地区一样,面临着不断升级的风险,这些风险可能很快就会达到不可逆转的临界点。果断的气候行动可以产生巨大的经济、社会和环境效益。经合组织的分析表明,到2050年,一套与气候兼容的政策方案可使全球长期GDP平均增长高达2.8%。例如,中亚各国政府采取的适应措施有助于避免干旱和洪水造成的经济损失,否则这些损失每年可能达到GDP的1.3%。通过将气候和绿化行动与经济议程相结合,欧亚大陆各国政府可以支持经济增长,增强竞争力,并最终增进公民的福祉。追求可持续的基础设施发展、采用有弹性的农业实践以及将更绿色的中小企业纳入包括关键原材料在内的全球价值链,可以帮助创造更强劲的经济体,能够抵御未来的冲击。
全球温度正在上升,干旱和狂野大火开始更频繁地发生,降雨模式正在转移,冰川和雪融化,海平面正在上升。人类正在推动地球的生态极限并影响我们的自然资本。全球社区已经开始采取行动,签署了国际协议,以限制温室排放,目的是将全球温度升高至最高2 O,但最好是小于1.5 o。减少排放和气候适应措施将有助于减轻这些影响和风险。物理和过渡气候风险驱动传统财务风险的传输通道非常复杂。减轻和管理风险及其影响的努力将需要我们的客户的强烈过渡和适应工作,以及NIBC与同行和其他利益相关者团体的合作。我们认识到,这些是需要野心,行动和负责任的方法的紧急挑战。需要采用负责任的方法,以避免其他意外的不利影响。气候变化还为NIBC提供了支持客户适应这些变化条件的机会,并使过渡能够大大减少,最好近零排放。我们认为,我们对环境的最大贡献可以支持这些绿色过渡。净零
在两倍的大气二氧化碳浓度下推导的LROM一般循环模型的主要平衡变化表明,全球平均温暖在1.5至4.5英寸C之间,>最佳猜测>最佳猜测> 2.5'c,在冬季,高纬度地区的表面温暖,但在夏季的全球平均水平高于全球平均水平,而降水量则较小。海冰和季节性雪覆盖 区域气候场景,例如 对于Fennoscandian区域,模拟平均冬季温度甚至5-6英寸C;但是,区域变化的估计值,尤其是降水和蒸发的变化非常不可靠。在两倍的大气二氧化碳浓度下推导的LROM一般循环模型的主要平衡变化表明,全球平均温暖在1.5至4.5英寸C之间,>最佳猜测>最佳猜测> 2.5'c,在冬季,高纬度地区的表面温暖,但在夏季的全球平均水平高于全球平均水平,而降水量则较小。海冰和季节性雪覆盖区域气候场景,例如对于Fennoscandian区域,模拟平均冬季温度甚至5-6英寸C;但是,区域变化的估计值,尤其是降水和蒸发的变化非常不可靠。暂时确定了温室引起的气候变化对环境的潜在后果。在审查了过去气候变异性(包括由于自然原因引起的突然变化和急剧变化)之后,注意力集中在特定的气候敏感过程和现象上,例如哭泣的过程(冰川过程,冰川,雪覆盖,多年冻土降解),斜坡稳定性,SLOPE稳定性,北部Peatland,北部Peatland,northern Peatland,northern Peatland的变化,素食ZONES和其他Ecosystem ecosystems and ecosystem ecosys whights and ecosys and ecosys whings ecosys响应。在评估气候变化对生态系统和景观的潜在影响时,地貌杂质生态过程的动态反应中的不确定性导致研究推荐。
冰岛是位于北大西洋的一个岛国,位于挪威、苏格兰和格陵兰岛之间。它是欧洲第二大岛,也是大西洋第三大岛,陆地面积约 10.3 万平方公里,海岸线长 6,088 公里,周边海域有 75.8 万平方公里的 200 海里专属经济区 (EEZ)。由于部分墨西哥湾暖流绕冰岛南部和西部海岸流动,冰岛的气候比其北部位置所暗示的要温暖。在首都雷克雅未克,7 月份的平均气温约为 12°C,1 月份略高于 0°C。冰岛多山地和火山地貌,最高峰海拔 2,110 米。低地从海岸延伸至内陆,主要分布在南部和西部。几座冰川,其中一座是欧洲最大的冰川,使冰岛的地貌独具特色。冰岛海岸多岩石,轮廓不规则,有许多峡湾和小湾,但南部除外,那里有沙滩,没有天然港口。只有约 23% 的总土地面积被划分为植被土地,其中大部分位于该国南部和西部以及从海岸延伸的几个肥沃的山谷中。冰岛拥有丰富的自然资源。其中包括岛屿周围的渔场、
课程标题信用气候/空间381本科研究经验1-4气候/空间401地球物理流体动力学4气候411云与降水量3气候414气候420气候420本科生研究经验1-4气候421物理学421造成海洋学的引入3气候422气候422边界气氛440气氛45气氛440气氛分析440气氛分析440气氛分析45 462大气和太空科学的仪器4气候463空气污染气象学3气候473气候物理3气候474冰盖,冰川和气候3气候475地球系统相互作用4气候479气候479大气化学480气候480气候495个空间495上空495上的大气层495上/ions ionsspracte 495 clade 495 clactiment 495 clactiment 495 clactiment 495 clactiment 4 climate 495 clade 495 clactere 495 clade 495 clade 495 ionsoption 4 ionsoption ionsoption ionsoption 495 1-3气候530在规划和设计中使用气候变化知识(高级)1-2气候/空间532辐射转移i(需要指导者许可)3气候578空气污染化学(强制性雷克斯)3空间584仪器和分析技术4气候/空间4气候/空间585远程感应和遥不可及的远程感应范围3 sirtive of Expersion 7 Micrtimentige 7 Micrtimentions(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射)(辐射(
●气候变化使干旱在世界范围内更加频繁和严重,预计趋势将继续恶化(IPCC 2023,第67页; Chiang等人。2023)。●气候变化加剧了干旱,这既是因为它改变了降雨模式,并且会增加温度,从而使生态系统越来越容易受到干燥条件的影响。升高的温度通过增加植物的蒸发率和水分消耗(Walker and van Loon 2023),导致土壤条件和水稀缺性(Overpeck and Preck and udall 2020)。●全球温度升高改变降水模式(联合国n.d。; Zhang等人2019),随着冰川的退缩,降低积雪水平并威胁冰川径流。●气候变化也导致干旱更快,使“闪存干旱”更加普遍(Yuan等人。2023)。这个新现实使预测和监测干旱更加困难。●在21世纪,预计干旱的总土地面积将增加,预计到本世纪末,全球土地面积超过40%,即使在低排放的情况下也将经历全年的干燥(IPCC 2023,p。1119; Cook等人; 2020)。2020)。
冰川地下水可以在北极的冰川和多年冻土下动员深处的甲烷,从而导致这种温室气体的大气排放。我们提出了一个暂时的水力化学数据集,该数据集是在两个熔融季节中从高北极冰川前场收集的富含甲烷的地下水,以探索甲烷排放的季节性动态。我们使用甲烷和离子浓度以及水和甲烷的同位素组成来研究地下水的来源以及地下水传输到表面的甲烷的起源。我们的结果表明了两个地下水的来源,一个浅层和一个深层,它们混合和中等的甲烷动力学。在夏季,富含甲烷的地下水被浅含氧地下水稀释,导致某些微生物甲烷在表面出现之前。地下水中微生物组成的表征表明,微生物活性是沿该流路线的重要季节性甲烷下沉。在所研究的地下水池中,我们发现由于微生物氧化,整个夏季,潜在的甲烷排放平均减少了29%(±14%)。在冬季,由于冷冻,减少地下甲烷氧化并有可能允许更大的甲烷排放,因此许多浅层系统关闭,而深层地下水保持活跃。我们的结果表明,随着含水层的能力和补给量在变暖的气候下增加,不同地下水来源的比率将在未来发生变化。
美国宇航局-印度空间研究组织 L 和 S 波段合成孔径雷达 (NISAR) 任务是美国宇航局和印度空间研究组织合作开展的一项任务,计划于 2024 年 1 月发射,最短任务寿命为 3 年。该任务通过高分辨率成像(2-30 米)、宽幅(240 公里)、高精度指向和轨道控制以及短重访周期(12 天)进行了优化,并采用了偏振测量和干涉测量技术,用于研究灾害和全球环境变化,特别支持其核心科学学科:生态系统、冰冻圈、固体地球科学和沿海海洋。一些重要的任务和仪器参数如表 1 所示。该卫星旨在提供地球的详细视图,以观察和测量地球上一些最复杂的过程,包括生态系统干扰、冰川和冰盖动态、由构造和非构造过程引起的陆地变形、沿海过程动态和自然灾害。除了科学需求外,该任务还将通过快速事件驱动下行链路、处理和交付相关数据来支持灾难响应。NISAR 拥有开放数据政策,任务数据将在必要的发射后传感器特性分析后提供给全球科学界,预计发射后 6 个月内完成。来自不同学科的研究人员和科学家将有很好的机会规划 NISAR 数据的利用并进行互动学习。
准确量化径流源并了解冰川山盆地中的水文过程对于面对气候变化的有效水资源管理至关重要。这项研究旨在通过利用集成的陆地表面,冰川能量平衡和河流路线模型来确定吉尔吉斯斯坦内部蒂恩 - 山山脉中各种径流源的贡献。考虑了对太阳辐射和云传播过程的局部地形影响,降低了网格的气象强迫数据。然后,对观察到的排放,冰川质量平衡和雪水等效的综合模型进行评估,重点是Kara-Batkak冰川参考位点。短波辐射校正对于提高模型模拟的准确性尤为重要。结果表明,峰值冰川熔体的贡献发生在7月和8月,一些盆地达到54%。每年,盆地中冰川的平均贡献为19%,而融雪和降雨的比率分别为58%和23%。这项研究强调了综合建模方法在理解和量化数据筛分高山区域中的径流组件方面的实用性。掺入观察到的冰川数据对于在当前气候条件下准确表示水文过程至关重要。这些发现强调了考虑冰川动态及其对水资源的影响,以告知冰川山区盆地的有效水管理策略。
全球变暖影响了格陵兰的气候,包括格陵兰冰盖(Gris),其外围冰川和冰盖(GIC)以及周围无冰的苔原(Bintanja&Selten,2014; Mernild et al。,2015; Shepherd&Wingham,2007; imbie Team,2020;北极扩增会导致绿地过度变暖(Zhang等,2022),降水降雨而不是下雪(Dou等,2019; Huai等,2021; Serreze等,2009)。对于强烈的气候变暖场景,降雨甚至有望成为北极降水的主要形式(Bintanja&Andry,2017年)。Screen和Simmonds(2012)表明,格陵兰降雪的减少主要是由于1989 - 2009年期间降水阶段的变化(降雪至雨)引起的,而总降水仍然在很大程度上恒定。dou等。(2019)发现,融化季节液体沉淀的增加是北极海冰融化的关键因素。详细了解降雪到降雨变化背后的过程也将有助于更准确地评估对水文学/径流,永久冻结,生态系统,海冰静修和冰川融化的影响(Bintanja,2018年)和链接的社会生态系统(McCrystall等人,20221年)。
