摘要 2000 多年来,玻璃一直是人类生活中不可或缺的一部分。尽管经过了数年的研究和分析,但有关玻璃的一些基本和实际问题仍未得到解答。虽然大多数早期方法都基于 (i) 专家知识和直觉、(ii) 爱迪生式的反复试验或 (iii) 物理驱动的建模和分析,但最近的研究表明,数据驱动技术(如人工智能 (AI) 和机器学习 (ML))可以提供解决其中一些问题的新视角。在本文中,我们确定了玻璃科学中的 21 个重大挑战,这些挑战的解决方案要么是启用 AI 和 ML,要么是通过 AI 和 ML 加速玻璃科学领域的发展。这里提出的挑战包括与玻璃形成和成分-加工-性能关系相关的基本问题,以及玻璃制造中的自动缺陷检测等工业问题。我们相信,本文将激发读者的热情,探索这里概述的一些重大挑战,并发现更多可以推动玻璃科学、工程和技术领域发展的挑战。
因为站点可以预测广泛的临床特征,并且可以从治疗方案中选择。皮肤中出现常见的皮肤黑色素瘤(〜90%的病例)。很少,黑素瘤(例如,胃肠道和生殖道的粘膜(约1 - 2%)出现在眼睛,眼睛(〜5%的情况)(约5%)中,在卵巢(脉络膜,iris和睫状体)中,或者在conjunctiva(conjunctiva conjunctiva scline scliends of conjunctiva and sclinies of sclinies of sclindions of sclinies of sclinies)图1)。特别关注的是,这些罕见的黑色素瘤亚型的治疗选择有限。许多流行病学和实验研究将非易纤维皮肤皮肤的常见黑色素瘤与暴露于紫外线辐射(UVR)及其基因组相结合,因此显示了直接UVR诱导的DNA损伤的证据,表现出高肿瘤突变负担(TMBS),c> t> t> t> t> t> t> t tistition 7(TMBS)的高度突变的底基7(TMBS)。2相比之下,稀有黑色素瘤通常具有较低的TMB,而C> T跃迁和SBS7的比例较低,但是具有大量的基因组结构变异(SV),具有特征性的染色体成分和损失。不同的黑色素瘤亚型也由不同的癌基因驱动。皮肤黑色素瘤通常由BRAF,NRA和NF1驱动,HTERT和TP53中有继发突变。粘膜黑色素瘤由BRAF和NRA驱动,但频率低于皮肤黑色素瘤,而Kit在该疾病中也是常见的驱动力。最后,紫veal黑色素瘤由GNAQ,GNA11和CYSLTR2驱动,BAP1,SF3B1和EIF1AX中具有次要突变。3 - 6
摘要。集成的光子学引起了广泛的关注,并且在经典和量子光学器件中发现了许多应用,从而满足了现代光学实验和大数据通信中不断增长的复杂性的要求。femtsecond(FS)激光直接写入(FLDW)是一种公认的技术,用于在透明玻璃中生产波导(WGS),这些技术已用于构造复杂的集成光子设备。fldw具有独特的特征,例如三维制造几何形状,快速原型和单步制造,这对于集成通信设备以及量子光子和天体技术技术很重要。为了充分利用FLDW,已经做出了相当大的努力,以在较大的深度上产生WG,而传播损失较低,耦合损失,弯曲损失和高度对象模式场。我们总结了具有可控的横截面形态,高度对称模式领域,低损失以及高处理统一性和效率的可控形态的高性能WGS的机制,并讨论WGS在光学集成设备中的WG最近进展,以进行通信,拓扑,量化物理学,量子,量子信息,量词,天文学处理和天文学。还指出了该领域的未来挑战和未来的研究指示。
摘要 多功能器件对于在同一平台上的集成和小型化具有重要意义,但简单地添加功能会导致器件过大。在这里,基于二维 (2D) 玻璃状石墨烯开发了光电检测和化学传感器件,该器件满足两种功能的类似特性要求。与原始石墨烯相比,扭曲的晶格结构产生的适当带隙使玻璃状石墨烯表现出相当甚至更好的光电检测和化学传感能力。由于玻璃状石墨烯与周围大气之间的强相互作用,这些器件对光诱导解吸的敏感度低于基于石墨烯的器件。因此,少层玻璃状石墨烯器件提供正光响应,响应度为 0.22 AW
作为原始的NMC阴极,Lini 1/3 MN 1/3 CO 1/3 O 2(NMC-111),也称为“ 1-1-1”,已被开发为最成功的锂离子阴极之一。随后,NMC家族通过N X M Y C Z阴极的组成增长(X:Y:Z = 4:3:3:3:3:3:3:3:3:3:3:2,6:2:2:2:2,8:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:1:y + y + z = 1)。满足对未来汽车市场(电动,混合电动和插电式混合动力汽车)的要求,朝着NMC朝着高镍含量(> 70%)的NMC迈进,高度高度的高度速度超过200 mH/g,电压和电压约为3.8 vs.3.8 V vs.li/li/li +不可避免地。然而,挑战是,NMC中较高的镍含量加剧了与表面相关的降解,包括表面相变,过渡金属溶液,晶格氧释放和电解质分解。因此,近年来,电池制造商正在积极地从多晶体过渡到单晶镍富含镍的材料,以减少内部表面(图1)。
本文分析了一种新型全玻璃直通真空管集热器的热性能建模和性能预测。开发了管的数学模型,并将其纳入 CFD 软件进行数值性能模拟。为了提高集热器的热性能预测,考虑了不同的人工神经网络 (ANN) 模型。采用包含 200 多个样本的综合实验数据集对模型进行测试。将热模拟模型与 ANN 模型相结合,使用建模的集热器输出作为输入模型之一,显著提高了 ANN 模型的预测精度。与 ANN 模型相比,仅基于 CFD 模型的预测精度最差。卷积神经网络 (CNN) 模型被证明是预测精度最好的 ANN 模型。关键词:太阳能集热器;真空管;神经网络;多元线性回归;CFD;热性能;预测
2020年11月每年在美国与玻璃碰撞的近十亿只鸟类大多数人认为与玻璃的鸟类碰撞是一种城市现象,涉及高大的镜像玻璃摩天大楼,但现实是,有56%的碰撞死亡率发生在低层建筑物(即1到四个故事)(即,在城市和农村住所中为44%,在高层建筑物中<1%(损失eT eT eT e et and and。2014)。许多政府设施和庇护游客中心符合大多数鸟类碰撞所涉及的建筑物的描述。幸运的是,现有建筑物可用于低成本,有吸引力的玻璃处理,而新的建筑物和改建可以结合鸟类安全的建筑物设计和专用玻璃。许多鸟类安全措施同时降低能源成本。最近的研究量化了北美的鸟类种群在过去的50年中已有近30亿只鸟类下降,应得到联邦机构的强烈反应,并且对有形行动的重点越来越重视,从而导致可衡量的保护结果,例如减少与玻璃的鸟类碰撞。最大程度地减少与玻璃碰撞的碰撞与116-100 - 内政部,环境和相关机构拨款的2020年法案;政府服务管理局(GSA)P100公共建筑服务的设施标准;并且对鸟类种群的关注不断增加。2020年6月,众议院通过了H.R.2,《鸟类安全建筑物法》,该法规定了由GSA管理的所有公共建筑以鸟类友好的方式设计或更改。能源和环境设计领域的领导地位(LEED)承认通过相关的信用来承认鸟类友好的设计和相关措施的重要性。此外,采取措施减少与玻璃碰撞的步骤支持13186年行政命令的意图:联邦机构的责任保护迁徙鸟类。鸟类看不到透明或反射玻璃作为障碍。玻璃产生了清晰空域的致命幻想。大部分碰撞发生在鸟类可以看到玻璃中的景观反射的那一天(例如,云,天空,植被或地面);或鸟类通过玻璃看到感知到的栖息地(例如,建筑物内的植物或植被)。当春季和秋季鸟类迁徙期间发生恶劣的天气时,鸟类可能会被照明设施吸引。导致碰撞,夹带,过多的能量消耗,疲惫以及偶尔大规模的夜间死亡事件。
HMWPP 是危险材料、废物和石油产品。所有 HMWPP 存储设施都应: • 通风良好。 • 为其中存储的 HMWPP 提供防热源保护。 • 提供防风雨保护,并具有防止雨水或洪水进入 HMWPP 的功能。HMWPP 存储设施应具有以下特点: • 避免暴露在风雨中 • 避免 HMWPP 暴露在风雨中 • 避免暴露在风雨中,以免 HMWPP 受到损坏。