摘要:Mxenes是一个新的二维材料家族,也称为过渡金属碳化物和氮化物,其通用公式为M n + 1 x n t x(n = 1 - 3)。它们固有的金属电导率和亲水性质具有迷人的物理化学特性(光学,电子,磁性,光到热转化。等)。超薄层的结构和光热特性吸引了许多在生物医学应用中的兴趣,尤其是作为癌症治疗的光质疗法剂。在这篇综述中,我们总结了光热疗法领域的MXENES的最新进展,并突出了至关重要的生物指数的制备和评估。首先,我们介绍了生物应用MXENES的制备和表面修饰的主要策略。然后,回顾了基于MXENE的光热应用领域的代表性病例,例如光热疗法,协同疗法和靶向治疗。最后,引入了细胞毒性和体内长期生物安全。我们还提出
实验和理论研究旨在了解人脑通常关注神经元,而对神经胶质细胞的关注相对较少。然而,一旦被认为仅仅是支持细胞,小胶质细胞现在被广泛认为是神经变性和神经炎症的重要贡献者。小胶质细胞在与神经元,星形胶质细胞和少突胶质细胞相互作用时执行许多任务。小胶质细胞的生物学现实计算模型将有助于了解其药物开发的生理学。小胶质细胞涉及无数的膜偶联受体,这使它们能够感知环境的浓度变化,以开始过程扩展或全细胞趋化性。以前,我们建立了小胶质细胞的基本数学模型,用于研究与定向运动有关的一些细胞方面[1-3]。
摘要:脊椎动物的基底神经节在动作选择中起着重要作用,这是替代运动程序之间冲突的解决方案。也已知基底神经节电路的有效操作依赖于适当水平的神经递质多巴胺。,我们研究了在以前的基底神经节模型中降低或增加模拟多巴胺的补品水平,该模型集成到了由动物行为启发的觅食任务中的机器人控制结构中。主要发现是,模拟多巴胺水平的进行性降低导致行为减慢,并且在低水平下无法启动运动。这些状态因显着水平的提高而部分缓解(更强的感觉/动机输入)。相反,增加的模拟多巴胺通过与丢失作用有关的部分表达的运动活动引起了机器人运动作用的扭曲。这也可能导致行为切换的频率增加。模拟多巴胺的水平显着降低或高于基线可能会导致行为整合的丧失,有时将机器人留在“行为陷阱”中。在受多巴胺失调影响的动物和人类中观察到某些类似的性状表明,机器人模型可以证明可用于理解多巴胺神经传递在基底神经节功能和功能障碍中的作用。
A Trisomy 21-linked Hematopoietic Gene Variant in Microglia Confers Resilience in Human iPSC Models of Alzheimer's Disease Mengmeng Jin 1 , Ziyuan Ma 1 , Rui Dang 1 , Haiwei Zhang 1 , Rachael Kim 1 , Haipeng Xue 2 , Jesse Pascual 3 , Steven Finkbeiner 4,5 , Elizabeth Head 3 , Ying刘2,彭江1, * 1 1个细胞生物学和神经科学系,罗格斯大学新不伦瑞克省,皮斯卡塔维,新泽西州08854,美国2,美国2环境健康科学系罗伯特·斯蒂姆佩尔公共卫生与社会工作学院,佛罗里达州佛罗里达州国际学院,佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州佛罗里达州教学,3498777777777777.987777777777777777777.79877777777777777777.7987, Irvine,CA 92697,美国4 CETER,用于系统和治疗学以及Taube/Koret神经退行性疾病中心,Gladstone Institutes;加利福尼亚大学,旧金山,加利福尼亚州94158,美国5个神经病学和生理学系,加利福尼亚大学旧金山,美国加利福尼亚州94158,美国 *地址通信到:Peng Jiang,Ph.D。细胞生物学和神经科学副教授系罗格斯大学新不伦瑞克604 Allison Road,Piscataway,NJ 08854电子邮件:peng.jiang@rutgers.edu电话:848-445-2805
血液脑屏障(BBB)通过有选择地防止物质从外周血进入中枢神经系统(CNS)来维持大脑体内平衡中起着至关重要的作用。由内皮细胞,周细胞和星形胶质细胞组成,这种高度调节的障碍包括大脑的大部分脉管系统。除了其保护功能外,BBB还与血管周围巨噬细胞(Mφ)和小胶质细胞(大脑的常驻Mφ)一起进行了重要的串扰。这些相互作用在调节包含BBB的细胞的激活状态以及MφS和小胶质细胞中起着关键作用。全身代谢和炎症状态的改变可以促进内皮细胞功能障碍,降低BBB的完整性,并可能允许外周血因子渗入中枢神经系统室。这可能介导血管周围MφS,小胶质细胞和星形胶质细胞的激活,并在脑实质内启动进一步的免疫反应,这表明可以通过来自周围的信号传导触发神经炎症,而无需源于CNS内的原发性损伤或疾病。通过BBB通过BBB之间的外围与中枢神经系统之间的复杂相互作用突出了了解小胶质细胞在介导对系统挑战的反应中的作用的重要性。尽管最近进步,但我们对小胶质细胞与BBB之间相互作用的理解仍处于早期阶段,留下了很大的知识差距。然而,新兴的研究正在阐明在各种疾病中,包括全身感染,糖尿病和缺血性中风的小胶质细胞的参与。本综述旨在对当前研究的研究进行全面概述,该研究调查了小胶质细胞与健康和疾病中BBB之间的复杂关系。通过探索这些联系,我们希望能够提高我们对脑免疫反应对系统性挑战的作用及其对CNS健康和病理的影响的理解。发现这些相互作用可能对涉及免疫和血管机制的神经系统疾病的新型治疗策略有希望。
昼夜节律参与了身体许多方面的调节,包括细胞功能,身体活动和疾病。昼夜节律障碍通常早于神经退行性疾病的典型症状,不仅是非运动症状,而且是其发生和进展的原因之一。神经胶质细胞具有调节其功能以维持脑发育和稳态的昼夜节律。新兴证据表明,小胶质细胞时钟参与了许多生理方面的调节,例如细胞因子释放,吞噬作用,营养和代谢支持,以及小胶质细胞时钟的破坏可能会影响帕金森疾病的多个方面,尤其是帕克森疾病的多个方面,尤其是神经毒素的方法。在此,我们回顾了昼夜节律控制健康和疾病功能的最新进展,并讨论了神经退行性疾病中小胶质细胞钟的新药理干预措施。
小胶质细胞是中枢神经系统(CNS)的常驻免疫细胞,因此在调节大脑稳态中起着至关重要的作用。已知它们在神经退行性疾病中的存在,在小胶质细胞中大量表达了与神经变性相关的风险基因,这突出了它们在促进疾病发病机理方面的重要性。转录组学研究发现了健康和疾病中小胶质细胞的异质景观,确定了与疾病相关的重要特征,例如大坝,以及对小胶质细胞表型的区域和时间多样性的洞察力。定量质谱法在神经退行性领域中的增加,被用作鉴定疾病生物标志物并获得对疾病病理学的更深入了解的方法。蛋白质是细胞功能的主要机械指标,但是转录本和蛋白质组学发现之间的不一致强调了对深度蛋白质组学表型和功能分析的需求,以完全了解细胞和分子水平的疾病动力学。本评论详细介绍了使用蛋白质组学来定义小胶质细胞生物学的当前进展,小胶质细胞中基因与蛋白质表达之间的关系以及旨在解决异质细胞景观的蛋白质组学和新兴方法的未来。
青少年饮酒与成人酒精问题和酒精使用障碍(AUD)的高率有关。成年(NADIA)青少年间歇性乙醇(AIE)在青少年暴饮暴食中饮酒的神经生物学,随后段落成熟到成年期,以确定神经生物学和行为的持续变化。aie增加了成人饮酒和偏爱,增加了焦虑和奖励,并破坏了睡眠和认知,所有这些风险都是aud的风险。此外,AIE诱导了改变神经记录和行为的神经元和神经胶质中神经免疫基因表达的变化。HMGB1是一种从神经元和乙醇释放的独特神经免疫信号,激活了多种促进性敏感受体,包括收费受体(TLR),它们会传播促进性敏感性基因诱导。HMGB1的表达通过大鼠脑和验尸后的AUD大脑中的AIE增加,与寿命饮酒相关。HMGB1 TLR激活增加TLR表达。 AIE后的人类AUD脑和大鼠大脑显示多个TLR的增加。 神经递质和细胞类型的大脑区域差异会影响乙醇反应和神经免疫基因诱导。 小胶质细胞是单核细胞样细胞,提供营养和突触功能,在反复的饮用周期中,乙醇促进的信号敏感或“素”,从而影响神经记录。 神经回路受到神经元信号传导的影响不同。 乙酰胆碱是一种抗炎性神经递质。 基因表达转录组的这些变化导致成人减少HMGB1 TLR激活增加TLR表达。AIE后的人类AUD脑和大鼠大脑显示多个TLR的增加。 神经递质和细胞类型的大脑区域差异会影响乙醇反应和神经免疫基因诱导。 小胶质细胞是单核细胞样细胞,提供营养和突触功能,在反复的饮用周期中,乙醇促进的信号敏感或“素”,从而影响神经记录。 神经回路受到神经元信号传导的影响不同。 乙酰胆碱是一种抗炎性神经递质。 基因表达转录组的这些变化导致成人减少AIE后的人类AUD脑和大鼠大脑显示多个TLR的增加。神经递质和细胞类型的大脑区域差异会影响乙醇反应和神经免疫基因诱导。小胶质细胞是单核细胞样细胞,提供营养和突触功能,在反复的饮用周期中,乙醇促进的信号敏感或“素”,从而影响神经记录。神经回路受到神经元信号传导的影响不同。乙酰胆碱是一种抗炎性神经递质。基因表达转录组的这些变化导致成人AIE通过上调RE-1沉默因子(REST)(一种转录抑制剂,已知的转录抑制剂,已知的转录神经元分化,通过上调多种胆碱能定义的基因来增加前脑中的HMGB1-TLR4信号传导,从而减少了胆碱能神经元。HMGB1静电诱导减少了海马基底前脑和胆碱能神经的胆碱能神经元。成年脑海马神经发生由由多个细胞形成的神经源性生殖位调节。体内AIE和体外研究发现乙醇会增加HMGB1-TLR4信号传导和其他促进性信号传导,以及还原营养因子,NGF和BDNF,与胆碱能突触标记VCHAT的丧失相一致。