胶质母细胞瘤是一种高度致命的脑癌,采用目前的标准治疗(包括手术、放疗和化疗)治疗时,平均生存期不到 15 个月。随着免疫疗法在晚期黑色素瘤和晚期非小细胞肺癌等其他侵袭性癌症中取得的最新成功,胶质母细胞瘤已成为免疫疗法研究的前沿。对治疗的耐药性一直是众多实验候选药物面临的主要挑战,迄今为止尚未批准任何用于胶质母细胞瘤的免疫疗法。肿瘤内和肿瘤间的异质性、固有的免疫抑制环境和肿瘤可塑性仍然是需要克服的障碍。此外,中枢神经系统和外周免疫系统之间独特的组织特异性相互作用对免疫疗法提出了额外的挑战。尽管如此,有足够的证据表明这些挑战是可以克服的,并且免疫疗法仍在胶质母细胞瘤中得到积极应用。本文回顾了胶质母细胞瘤的主要免疫疗法候选药物,重点关注免疫检查点抑制剂、髓系靶向疗法、疫苗和嵌合抗原受体 (CAR) 免疫疗法。我们进一步深入了解了耐药机制,以及我们对这些机制的理解如何为更有效的胶质母细胞瘤免疫疗法铺平道路。
摘要简介:近年来,神经肿瘤学领域取得了重大进展。现在人们对神经胶质瘤的分子和遗传特征的了解比以往任何时候都多。这些知识有助于了解神经胶质瘤的生物学和发病机制,指导靶向治疗和临床试验的开发。本综述的目的是描述与神经胶质瘤生物和合成药物治疗相关的基础、转化和临床研究的现状。涵盖的领域:设计准确的临床前模型和确定可能对特定靶向治疗有反应的患者方面仍然存在挑战。用于治疗评估的临床前模型对于确定最有希望的治疗方法至关重要。专家意见:尽管有前景的新疗法,但神经胶质瘤治疗和患者结果方面尚未取得重大突破。因此,迫切需要更好地了解治疗耐药的机制并设计有效的临床试验。
在所有中枢神经系统肿瘤中,神经胶质瘤是最常见的。如今,研究人员正在寻找更有效的治疗方法以及早期诊断的方法。受体酪氨酸激酶(RTK)是肿瘤学的主要靶点,小分子 RTK 抑制剂的开发已被证明可成功治疗癌症。RTK 及其细胞内信号通路的突变或异常激活与多种恶性疾病有关,包括胶质母细胞瘤。对恶性神经胶质瘤进化理解的进展导致了 RTK 靶向治疗,该疗法具有很高的能力,可提高治疗反应并降低毒性。在本综述中,我们介绍了目前用于开发癌症治疗的最重要的 RTK(即 EGFR、IGFR、PDGFR 和 VEGFR)以及 RTK 相关药物在胶质母细胞瘤治疗中的潜力。此外,我们还关注一些目前处于不同研究阶段甚至临床阶段的治疗药物,这些药物被证明适合作为胶质母细胞瘤治疗的再利用候选药物。
胶质母细胞瘤(GBM)肿瘤是成年人中最具侵略性的原发性脑肿瘤,尽管治疗最大,但仍具有令人沮丧的预后。GBM肿瘤表现出组织缺氧,可促进肿瘤侵袭性和胶质瘤干细胞的维持,并产生总体免疫抑制景观。本文回顾了低氧条件如何与炎症反应重叠,有利于免疫抑制细胞的扩散并抑制细胞毒性T细胞的发育。免疫疗法,包括疫苗,免疫检查点抑制剂和CAR-T细胞疗法,代表了GBM治疗的有希望的途径。然而,诸如肿瘤异质性,免疫抑制性TME和BBB限制性等挑战阻碍了它们的有效性。正在积极探索解决这些挑战的策略,包括组合疗法和靶向缺氧,以改善GBM患者的预后。靶向缺氧与免疫疗法结合使用是增强治疗效率的潜在策略。
摘要背景胶质母细胞瘤是侵袭性最强、扩散最广的原发性脑肿瘤。即使接受了所有主要标准治疗,复发仍然几乎普遍。本文旨在回顾文献并更新复发性胶质母细胞瘤患者的标准治疗策略。方法在 PubMed central、Medline 和 Embase 数据库中以“复发性胶质母细胞瘤及其治疗”为搜索词进行系统搜索,以查找截至 2020 年 12 月发表的有关该主题的所有文章。综述包括同行评审的原创文章、临床试验、评论文章以及标题和摘要中的关键词。结果在搜索的 513 篇文章中,经过资格筛选后,73 篇被纳入本综述。分析数据后,大多数研究报告再次手术后的中位总生存期 (OS) 为 5.9 至 11.4 个月,未再次手术的中位总生存期 (OS) 为 4.7 至 7.6 个月。立体定向放射外科 (SRS) 和分次立体定向放射治疗 (FSRT) 的再次放射治疗导致中位 OS 分别为 10.2 个月(范围:7.0 - 12 个月)和 9.8 个月(范围:7.5 - 11.0 个月)。SRS 后发现 16.6%(范围:0 - 24.4%)的患者出现放射性坏死。亚硝脲 (卡莫司汀)、贝伐单抗和替莫唑胺 (TMZ) 等化疗药物再次治疗导致中位 OS 分别为 5.1 - 7.5、6.5 - 9.2 和 5.1 - 13.0 个月,6 个月无进展生存期 (PFS-6) 分别为 13 - 17.5%、25 - 42.6% 和 23 - 58.3%。使用表皮生长因子受体 (EGFR) 抑制剂可使 OS 中位数达到 2.0 至 3.0 个月,PFS-6 为 13%。结论虽然复发性胶质母细胞瘤仍然是一种普遍导致死亡的致命疾病,但文献表明,一部分患者可能受益于最大限度的治疗努力。
对现有疗法的抗药性在实现成功的治疗结果方面引起了严重的关注。替莫唑胺(TMZ)是一种在胶质母细胞瘤疗法中广泛使用的烷基化疗,通常会遇到耐药性,因此需要研究TMZ获得耐药性的基本机制。为了研究TMZ抗性,通过间歇性将胶质母细胞瘤细胞暴露于六个月内TMZ的浓度和时间的增加而产生基于细胞的模型系统。细胞在较高浓度下的存活反应证实了对TMZ抗性细胞,表型向间充质状状态发生了表型转移,上皮性状降低,表明间质上皮上皮过渡(MET)。这种过渡可能有助于抗TMZ耐药细胞的稳定和克隆生长。
此预印本的版权所有者此版本于 2022 年 1 月 9 日发布。;https://doi.org/10.1101/2021.01.09.426030 doi:bioRxiv preprint
胶质母细胞瘤 (GBM) 是所有原发性脑肿瘤中最恶性的一种,每年导致全球约 200,000 人死亡。GBM 的标准疗法包括手术切除,然后进行以替莫唑胺为基础的化疗和/或放疗。通过这种治疗,GBM 患者在初次诊断后的平均生存期仅为 15 个月。因此,迫切需要新的、更好的 GBM 治疗方式。越来越多的证据表明,非编码 RNA (ncRNA) 作为基因表达的调节剂发挥着关键作用。长链非编码 RNA (lncRNA) 和微小 RNA (miRNA) 是健康和疾病中研究最多的 ncRNA。几乎所有类型的肿瘤,包括 GBM,都存在 ncRNA 失调。在 GBM 细胞系和 GBM 肿瘤样本中已鉴定出几种失调的 miRNA 和 lncRNA。其中一些已被提议作为诊断和预后标志物,以及作为 GBM 治疗的靶点。大多数基于 ncRNA 的疗法使用寡核苷酸 RNA 分子,而这些分子在循环中的寿命通常较短。纳米粒子 (NP) 旨在增加寡核苷酸 RNA 的半衰期。血脑屏障 (BBB) 的存在不仅是 RNA 寡核苷酸面临的另一个挑战,也是针对大脑相关疾病的疗法面临的另一个挑战。BBB 是保护大脑免受不良物质侵害的解剖屏障。尽管一些 NP 已在其表面衍生化以穿过 BBB,但目前还没有最佳的 NP 来将寡核苷酸 RNA 递送到大脑中的 GBM 细胞中。在这篇综述中,我们首先描述了 GBM 疗法的当前治疗方法。接下来,我们将讨论被建议作为 GBM 治疗靶点的最相关的 miRNA 和 lncRNA。然后,我们比较了目前用于 RNA 寡核苷酸输送的药物输送系统(纳米载体/NPs)、将药物输送通过 BBB 所面临的挑战以及克服这一障碍的策略。最后,我们归类了研究应重点关注的关键点,以便设计出用于将药物输送到大脑的最佳 NPs;从而将基于寡核苷酸 RNA 的疗法从实验室转移到临床环境。
图2 G蛋白亚基激活后触发的G蛋白偶联受体的各种信号通路的示意图(A,B和C)。激动剂结合的GPCR在G A亚基上交换GDP,从而触发了G a(S,I,Q,12)从受体和G BC触发。(a)激活的G A S刺激膜相关的酶腺苷酸环化酶(AC),从而增加了ATP - CAMP转换。cAMP充当第二个使蛋白激酶A(PKA)的信使,该蛋白激酶A(PKA)可以磷酸化多个下游靶标。而g a i亚基抑制了交流。(b)激活的G A Q刺激膜结合的磷脂酶C(PLC)至裂解磷脂酰肌醇双磷酸盐(PIP 2)进入第二个使者三磷酸肌醇(IP 3)和二酰基甘油(DAG)。IP 3增加了细胞内钙浓度(Ca 2+),而膜结合的DAG通过将其从细胞质转移到质膜来激活PKC。GPCR激酶(GRK)磷酸化G蛋白独立的配体结合GPCR,以启动B- arrestin的募集并阻止G蛋白偶联。 GPCR-B - 抑制蛋白复合物促进内吞作用,运输配体 - GPCRs对内体进行分类,以回收到质膜或信号和各种细胞过程的信号传导和调节。 用Biorender(biorender.com)准备的数字。GPCR激酶(GRK)磷酸化G蛋白独立的配体结合GPCR,以启动B- arrestin的募集并阻止G蛋白偶联。GPCR-B - 抑制蛋白复合物促进内吞作用,运输配体 - GPCRs对内体进行分类,以回收到质膜或信号和各种细胞过程的信号传导和调节。用Biorender(biorender.com)准备的数字。
上下文:胶质母细胞瘤是最具侵入性的脑肿瘤,预后不良和快速进展。标准疗法(Surgical切除,辅助化疗和放射疗法)可确保只有18个月的生存率。在本文中,我们着重于放射疗法的创新类型,替莫唑胺与新型物质的各种组合以及它们给药的方法以及向肿瘤细胞的载体递送。证据获取:为了详细研究化学疗法和放疗的各种选择,Elsevier,NCBI Medline,Scopus,Google Scholar,Embase,Web of Science,Cochrane图书馆,Embase,Global Health,Cyberleninka和RSCI数据库进行了分析。结果:最可用的方法是口服或静脉注射替莫唑胺。更有能力的是替莫唑胺与创新药物以及诸如Lomustine,组蛋白脱乙酰基酶抑制剂和氯喹以及Olaparib等物质的化学疗法。这些组合提高了患者的存活,并且在耐药的治疗方面有效。与标准分离放射疗法(60 Gy,30个分数,6周)相比,由于缺乏毒性,因此对老年患者的次数更有效。近距离放射治疗降低了胶质母细胞瘤复发的风险,而贝伐单抗的放射外科对复发性或无法手术的肿瘤更有效。目前,最有效的治疗被认为是鼻内抗氧抗蛋白A3(抗epha3)含有替莫唑胺的丁基酯(TBE负载(TBE)聚乳酸乙二醇酯纳米颗粒(P-NPS)的N-N-N-n-n- claSan in-clecotsan cletsanyy cletsanyy(TMC)clecotsan cletsanyy cletrosany(tbe)多乳酸乙二醇酯(TME)(tbe)cletosan(tbe)cletosan in-cletsanyy cletrosany in-cletsan in-precotsan cletsan in-cletsanyy cletsanyyyyyyyy(TM)结论:newradiotherapeuticmethodssignifirafly increaseThersEthesulvivalRates of Glioblastomapatients。综合出发,可能导致消除所有使健康的肿瘤细胞活着。新的化学治疗药物与替莫唑胺的辅助性伴随着令人印象深刻的疾病。覆盖有TMC的P-NP的抗ePha3-tbe-tbe-tbe-tbe-tbe-tbe tmc具有高吸收蛋白,并有效地杀死胶质母细胞瘤细胞。一个新的“前进”可能会成为未来的一种药物,从而降低了纳米颗粒在肺部的特定积累,但同时不影响肿瘤细胞的特定吸收。
