细胞疗法,包括嵌合抗原受体T细胞疗法(CAR-T),虽然通常在血液学恶性肿瘤中成功成功,但面临着针对实体瘤的实质性挑战,例如胶质母细胞瘤(GBM),由于快速生长,抗原异质性,抗原异质性,并且由于对细胞质量和免疫的反应不足,以前显示了GB的响应,我们以前曾表现过GB,我们以前曾经表现出GB,我们以前曾经表现出GB,我们曾经表现出GB,我们曾经表现出GB的响应。由伽马三角洲(GD)T细胞识别的配体(NKG2DL),这是一种次要淋巴细胞亚群,通过GD T细胞受体(TCR),NKG2D和多种机制,天生识别靶分子。鉴于NKG2DL表达在GBM细胞上通常不足以引起对GD T细胞免疫疗法的有意义反应,然后我们证明,使用诸如替莫唑胺(TMZ)的烷基化剂的DNA损伤反应(DDR)途径的激活可以通过激活DNA损伤反应(DDR)途径来暂时上调NKG2DL表达。tmz也对GD T细胞有毒。使用p140k/mgmt lentivector,通过表达O(6) - 甲基瓜氨酸-DNA-DNA-甲基转移酶(MGMT)来赋予对TMZ的耐药性,我们进行了基因工程的GD T细胞,这些GD T细胞可在TMZ治疗剂量的存在下保持全部效应。然后,我们验证了一种治疗系统,该系统称我们称其为耐药性免疫疗法(DRI),该系统将TMZ的标准方案与同时在最初的I-Human Spearial I临床试验中同时抗TMZ内输注TMZ耐TMZ的GD T细胞(NCT04165941)。本手稿将讨论DRI作为新诊断的GBM的合理治疗方法,并且在具有稳定的最小残留疾病的患者中,重复给予DRI与现有标准的Stupp方案相结合的重要性。
1 计算生物医学实验室 (CBML)、计算机科学研究所、希腊研究与技术基金会 — 希腊 (FORTH),2 伦敦南岸大学健康与社会保健研究所,英国伦敦,3 伦敦大学学院皇后广场神经病学研究所脑科学学院,英国伦敦,4 伦敦大学学院国家神经病学和神经外科医院利斯霍姆神经放射学系,英国伦敦,5 斯坦福大学放射学系、神经影像和神经介入科,美国加利福尼亚州斯坦福,6 卢布尔雅那大学医学院放射学系,斯洛文尼亚卢布尔雅那,7 卢布尔雅那大学医学中心神经放射学系,斯洛文尼亚卢布尔雅那,8 伦敦大学学院皇后广场神经病学研究所脑修复与康复系,英国伦敦,9 伦敦大学学院国家神经病学和神经外科医院神经放射学系,英国伦敦 NHS 基金会英国伦敦信托基金,10 希腊地中海大学电气与计算机工程系,希腊伊拉克利翁
f i g u r e 1 p53失活挽救NBS1 NES-CRE有害脑表型。(a)通过p53失活在p21处拯救NBS1 NES-CRE脑缺陷。(b)与NBS1 NES-CRE EGL和大脑皮层相比,NBS1 NES-CRE,P53 / EGL和大脑皮层缺乏凋亡。比例尺=20μM。(c)与NBS1 NES-CRE的大脑相比,NBS1 NES-CRE EGL中的Tunel阳性细胞数量显着减少。nbs1 nes-cre(n = 3),nbs1 nes-cre,p53 /(n = 2),nbs1 ctrl(n = 4)。nbs1 nes-cre vs nbs1 ctrl(脑皮质**:p = 0.0018,egl ****:p <0.0001),nbs1 nes-cre,p53 / vs nbs1 nbs1 nbs1 nes-cre(大脑皮层NBS1 CTRL(脑皮质 *:P = 0,0181,EGL *:P = 0.0360)。(d)NBS1 NES-CRE和NBS1 NES-CRE,P53 / EGL表现出γ-H2AX灶。比例尺=20μM。(E)NBS1 NES-CRE和NBS1 NES-CRE,p53 / eGL和脑皮质中γ-H2AX +细胞的定量。n.s:没有显着差异。nbs1 nes-cre
中枢神经系统 (CNS) 恶性肿瘤通常是所有癌症中预后最差的,与其他癌症相比,其估计寿命损失最高(1)。神经胶质瘤是最常见的中枢神经系统肿瘤(2),约占所有恶性肿瘤的 80% 和所有原发性脑肿瘤的 30%。此外,在所有原发性脑肿瘤导致的死亡中,神经胶质瘤的死亡率最高(3,4)。一些流行病学研究揭示了几种可能影响神经胶质瘤的因素,包括肥胖(5,6)、饮酒(7)、吸烟(8,9)、糖尿病(10,11)和咖啡摄入量(12)。胰岛素抵抗、炎症和激素水平改变可能参与肥胖、糖尿病、生活方式因素与神经胶质瘤风险之间关联的潜在机制(5-12)。
摘要。- 1型神经纤维瘤病(NF1)是一种常染色体显性遗传疾病,其性疾病的风险增加,患有多种良性和恶性肿瘤。少年至20%的NF1儿童在7岁之前被诊断出患有视神经胶质瘤(NF1-OPG),其中超过一半的视觉下降。目前,在受NF1-OPG影响的受试者中,尚无有效的治疗可预防,恢复甚至稳定视力丧失。本文旨在回顾最近在临床前和临床环境中评估的主要新兴药理方法。我们对embase,PubMed和Scopus数据库进行了搜索,以识别有关NF1-OPG的文章及其治疗的文章,直到2022年7月1日。分析文章的参考列表也被认为是文献信息的来源。要搜索和分析所有相关的英语艺术品,以下关键字用于各种组合:神经纤维瘤病1型,视觉途径胶质瘤,化学疗法,精密医学,MEK抑制剂,VEGF,VEGF,神经生长因子。在过去的十年中,基础研究以及与NF1相关的OPG的基因工程小鼠模型的开发揭示了未疾病的细胞和分子机制,并激发了几种化合物的动物和人类测试。一项研究线的重点是抑制MTOR,MTOR是一种控制蛋白质的蛋白激酶,蛋白质合成速率和细胞促进性,该蛋白质合成速率和细胞杂质在肿瘤细胞中高度表达。在临床试验中已经测试了几个MTOR阻滞剂,最近的试验使用了口服Everolimus,结果令人鼓舞。不同的策略旨在恢复肿瘤星形胶质细胞和非肿瘤性神经的营地水平,因为降低了细胞内营地水平有助于OPG生长,并且更重要的是 -
1。Wisner ER,Dickinson PJ,Higgins RJ。磁共振成像的特征是犬内肿瘤的特征。vet radiol超声。2011; 52:S52-S61。2。José-LópezR,Gutierrez-Quintana R,Fuente C等。伴有神经胶质瘤的狗的临床特征,诊断和生存分析。J VET Intern Med。2021; 35:1902-1917。3。Young BD,Levine JM,Porter BF等。狗内星形胶质细胞瘤和少突胶质瘤的磁共振成像特征。vet radiol超声。2011; 52:132-141。4。Bentley RT,Ober CP,Anderson KL等。犬颅内神经胶质瘤:磁共振成像标准与肿瘤类型和等级之间的关系。兽医J。 2013; 198:463-471。 5。 Koehler JW,Miller AD,Miller CR等。 修订了犬神经瘤的诊断性临床化:旨在验证犬神经胶质瘤患者是人神经胶质瘤的天然临床前模型。 J Neuropathol Exp Neurol。 2018; 77:1039-1054。 6。 Kraft SL,Gavin PR,Dehaan C,Moore M,Wendling LR,Leathers CW。 回顾性评论通过磁共振成像评估的50种犬颅内肿瘤。 J VET Intern Med。 1997; 11:218-225。 7。 Bentley RT。 磁性共振成像对狗的脑肿瘤的诊断。 兽医J。 2015; 205:204-216。 8。 Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。 前兽医Sci。兽医J。2013; 198:463-471。 5。 Koehler JW,Miller AD,Miller CR等。 修订了犬神经瘤的诊断性临床化:旨在验证犬神经胶质瘤患者是人神经胶质瘤的天然临床前模型。 J Neuropathol Exp Neurol。 2018; 77:1039-1054。 6。 Kraft SL,Gavin PR,Dehaan C,Moore M,Wendling LR,Leathers CW。 回顾性评论通过磁共振成像评估的50种犬颅内肿瘤。 J VET Intern Med。 1997; 11:218-225。 7。 Bentley RT。 磁性共振成像对狗的脑肿瘤的诊断。 兽医J。 2015; 205:204-216。 8。 Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。 前兽医Sci。2013; 198:463-471。5。Koehler JW,Miller AD,Miller CR等。修订了犬神经瘤的诊断性临床化:旨在验证犬神经胶质瘤患者是人神经胶质瘤的天然临床前模型。J Neuropathol Exp Neurol。2018; 77:1039-1054。 6。 Kraft SL,Gavin PR,Dehaan C,Moore M,Wendling LR,Leathers CW。 回顾性评论通过磁共振成像评估的50种犬颅内肿瘤。 J VET Intern Med。 1997; 11:218-225。 7。 Bentley RT。 磁性共振成像对狗的脑肿瘤的诊断。 兽医J。 2015; 205:204-216。 8。 Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。 前兽医Sci。2018; 77:1039-1054。6。Kraft SL,Gavin PR,Dehaan C,Moore M,Wendling LR,Leathers CW。 回顾性评论通过磁共振成像评估的50种犬颅内肿瘤。 J VET Intern Med。 1997; 11:218-225。 7。 Bentley RT。 磁性共振成像对狗的脑肿瘤的诊断。 兽医J。 2015; 205:204-216。 8。 Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。 前兽医Sci。Kraft SL,Gavin PR,Dehaan C,Moore M,Wendling LR,Leathers CW。回顾性评论通过磁共振成像评估的50种犬颅内肿瘤。J VET Intern Med。1997; 11:218-225。7。Bentley RT。 磁性共振成像对狗的脑肿瘤的诊断。 兽医J。 2015; 205:204-216。 8。 Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。 前兽医Sci。Bentley RT。磁性共振成像对狗的脑肿瘤的诊断。兽医J。 2015; 205:204-216。 8。 Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。 前兽医Sci。兽医J。2015; 205:204-216。 8。 Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。 前兽医Sci。2015; 205:204-216。8。Stadler KL,Ruth JD,Pancotto TE,Werre SR,Rossmeisl JH。前兽医Sci。计算机断层扫描和磁共振成像在男性调查方面是等效的,并且类似地在犬颅内神经胶质瘤的等级和类型可预测性方面不准确。2017; 4:157。 9。 Larroza A,BodíV,MoratalD。磁共振成像中的纹理分析:对未来应用的审查和考虑。 in:Contantinides c(ed):使用直接和衍生的MRI方法评估细胞和器官功能以及dys功能。 互联网:伦敦:Intechopen,2016年。 10。 van Timmeren JE,Cester D,Tanadini-Lang S,Alkadhi H,BaesslerB。 见解成像。 2020; 11:91。 11。 Castellano G,Bonilha L,Li LM,CendesF。医学图像的纹理分析。 Clin radiol。 2004; 59:1061-1069。 12。 Rizzo S,Botta F,Raimondi S等。 放射线学:图像分析的事实和挑战。 EUR RADIOL EXP。 2018; 2:36。 13。 Sanduleanu S,Woodruff HC,De Jong Eec等。 与放射线学跟踪肿瘤生物学:使用放射线质量评分的系统评价。 Radiother Oncol。 2018; 127:349-360。2017; 4:157。9。Larroza A,BodíV,MoratalD。磁共振成像中的纹理分析:对未来应用的审查和考虑。in:Contantinides c(ed):使用直接和衍生的MRI方法评估细胞和器官功能以及dys功能。互联网:伦敦:Intechopen,2016年。10。van Timmeren JE,Cester D,Tanadini-Lang S,Alkadhi H,BaesslerB。见解成像。2020; 11:91。11。Castellano G,Bonilha L,Li LM,CendesF。医学图像的纹理分析。Clin radiol。 2004; 59:1061-1069。 12。 Rizzo S,Botta F,Raimondi S等。 放射线学:图像分析的事实和挑战。 EUR RADIOL EXP。 2018; 2:36。 13。 Sanduleanu S,Woodruff HC,De Jong Eec等。 与放射线学跟踪肿瘤生物学:使用放射线质量评分的系统评价。 Radiother Oncol。 2018; 127:349-360。Clin radiol。2004; 59:1061-1069。 12。 Rizzo S,Botta F,Raimondi S等。 放射线学:图像分析的事实和挑战。 EUR RADIOL EXP。 2018; 2:36。 13。 Sanduleanu S,Woodruff HC,De Jong Eec等。 与放射线学跟踪肿瘤生物学:使用放射线质量评分的系统评价。 Radiother Oncol。 2018; 127:349-360。2004; 59:1061-1069。12。Rizzo S,Botta F,Raimondi S等。放射线学:图像分析的事实和挑战。EUR RADIOL EXP。 2018; 2:36。 13。 Sanduleanu S,Woodruff HC,De Jong Eec等。 与放射线学跟踪肿瘤生物学:使用放射线质量评分的系统评价。 Radiother Oncol。 2018; 127:349-360。EUR RADIOL EXP。2018; 2:36。 13。 Sanduleanu S,Woodruff HC,De Jong Eec等。 与放射线学跟踪肿瘤生物学:使用放射线质量评分的系统评价。 Radiother Oncol。 2018; 127:349-360。2018; 2:36。13。Sanduleanu S,Woodruff HC,De Jong Eec等。与放射线学跟踪肿瘤生物学:使用放射线质量评分的系统评价。Radiother Oncol。2018; 127:349-360。
BRAF V600E代表了所有人类癌症中最常见的BRAF突变。在中枢神经系统(CNS)肿瘤中,BRAF V600E大多在小儿低级神经胶质瘤(PLGG,〜20%)中发现,而在小儿高级神经胶质瘤(PHGG,5-15%)和成人胶质母细胞瘤(GBM,〜5%)中发现。BRAF抑制剂(BRAFI)在治疗神经胶质瘤患者中的整合带来了临床护理的范式转移。但是,并非所有患者都因对BRAF抑制的内在或获得性抗性而受益匪浅。定义的反应预测因素,以及制定策略以防止对Brafi的抵抗和克服BRAFI后肿瘤的进展/反弹增长,这是目前的一些主要挑战。在这篇综述中,我们概述了胶质瘤中BRAF抑制的当前成就和局限性,特别关注了潜在的抗性机制。我们讨论了针对BRAF V600E突变神经胶质瘤的目标疗法的未来方向,强调了如何利用对BRAFI的抗性以改善结果的洞察力。
高级别胶质瘤,尤其是弥漫性中线胶质瘤、儿童 H3K27 变异和成人胶质母细胞瘤,是最致命的脑肿瘤,预后不佳。现代医学的发展不断应用于寻找治愈方法,尽管找到正确的策略仍然难以捉摸。绕过血脑屏障是治疗脑肿瘤的最大挑战之一。寻找特洛伊木马来穿越这一屏障并将治疗药物输送到大脑的猫捉老鼠游戏是一场漫长而艰苦的斗争。研究正在进行中,以寻找新的可行方法来达到大脑中的特定目标,特别关注无法手术或复发的脑肿瘤。迄今为止,已经测试了许多选项和选项组合,并将继续进行测试,以寻找最有效和毒性最小的治疗模式。尽管改进通常很小而且进展缓慢,但其中一些策略已经显示出希望,为找到治愈方法带来了希望之光。在这篇评论中,我们讨论了最近的发现,这些发现阐明了有希望但非典型的针对胶质瘤的策略,以及这项工作对开发新治疗方案的影响。
头部和颈部paragangliomas(HNPGL)是罕见的神经内分泌肿瘤,具有高度的遗传力,并且主要与十个基因的突变相关,例如SDHX,SDHAF2,SDHAF2,VHL,VHL,RET,RET,RET,NF1,NF1,NF1,TMEM127,MAX,MAX,FH,MEN2,MEN2,MEN2,MEN2和SLC25A11。阐明突变患病率对于基因检测的发展至关重要。在这项研究中,使用整个外显子组测序中,我们在102名HNPGL(82个颈动脉和23个迷走神经paragangliomas)的俄罗斯患者中鉴定了主要易感性基因中的致病/可能致病变异。在43%(44/102)的患者中检测到致病性/可能的致病变异。我们确定了测试基因的以下变体分布:SDHA(1%),SDHB(10%),SDHC(5%),SDHD(24.5%)和RET(5%)。SDHD变体。因此,在HNPGLS患者中,最常见的基因是SDHD,其次是SDHB,SDHC,RET和SDHA。
抽象背景术中功能映射近年来,在清醒手术期间,均具有直接电刺激,近年来使用弥漫性低级神经胶质瘤的患者来优化手术切除和手术后生活质量之间的平衡。执行功能的映射由于其复杂的性质而尤其具有挑战性,到目前为止仅发布了少数报告。在这里,我们建议使用电皮质学直接从大脑表面记录神经活动,以绘制执行功能并证明其可行性和潜在效用。追踪执行功能的神经特征的方法,我们在清醒手术中使用电视学的神经活动记录了三名被认为出现弥漫性低级神经胶质瘤的患者的额叶皮层。基于健康参与者的现有功能磁共振成像(fMRI)证据,以招募与任务需求增加的执行功能相关的领域,我们在术中执行的两个计数任务中采用了任务难度操纵。手术后,将数据提取并离线分析,以确定宽带高γ功率的增加,而任务难度增加,等同于fMRI发现,这是与执行功能有关的活动的签名。结果所有三名患者都很好地执行了任务。数据是从5条电极条中记录的,从而导致总体上15个通道的数据。高伽马功率随着任务难度的增加而增加,在规范额叶网络模板内的区域中,更有可能。在15个通道中有11个(73.3%)显示出高γ功率的显着增加,任务难度增加,26.6%的渠道(4/15)没有显示功率的变化,并且没有任何渠道显示功率下降。结论这些结果是开发电皮质学的第一步,作为绘制执行功能的工具,以互补的方式指导电刺激以指导切除。需要进一步的研究来建立这种临床使用方法。