在自身免疫性糖尿病(1)的情况下,Sahota及其同事最近的一份病例报告为通过多巴胺(DA)受体刺激提供了新的见解。Brie the,一名自身免疫性糖尿病患者被诊断出患有垂体催乳素瘤,导致用糖尿病药物的Da D 2 -2类受体的激动剂Cabergoline治疗。随着时间的流逝,患者被切换到Cabergoline单一疗法,从而逆转了他的胰岛素需求。这导致了高血糖控制的显着改善,并修订了对成年人的潜在自身免疫性糖尿病(LADA)。最终在胰岛素治疗中重新开始,在逐渐增加血糖。LADA患者在开始抗血糖治疗(包括非胰岛素剂)后不久就会获得足够的血糖控制(2)。与此相一致的是,在LADA患者(如二肽基肽酶4抑制剂)(例如saxagliptin)或胰高血糖素(如肽1受体激动剂(例如,dulaglutide)(例如,dulaglutide)表现出数月和延迟的胰岛素进度(2 - 5),对此(例如肽酯)1受体激动剂(例如,dulaglutide)表现出改善(2 - 5)。重要的是,与上面更常用的药物类别相反,这种情况代表了自身免疫性糖尿病的DA受体激动剂单一疗法的第一个描述(1)。这些发现提出了有关生物学机制的重要问题,即d 2(例如受体激动剂)可以有效治疗血糖症,特别是在糖尿病的情况下。
GLP-1受体激动剂模仿天然GLP-1肽的作用,增强胰岛素分泌,抑制胰高血糖素的释放,减慢胃排空和饱腹感。最初引入以治疗糖尿病,还发现它们对体重减轻有重要影响。根据医学和非医学专家的看法,肥胖症医疗管理的范式可能会迫在眉睫(1-3)。诸如Semaglutide,Liraglutide或Tirzepatide(双重GLP-1和GIP类似物)等药物导致参与者在临床试验和现实世界中的参与者的重量显着降低,使其在患者和医生中流行。GLP-1受体激动剂在体重管理中的成功在于其多方面的机制,它解决了饥饿,饱腹感和葡萄糖代谢的复杂生理途径。这些药物不仅针对胰腺和肠道,还针对大脑的下丘脑食欲调节中心。GLP-1类似物的某些影响可能归因于其对中枢神经系统神经递质分泌/作用的作用;它们增强了γ-氨基丁酸(GABA)活性,恢复多巴胺能活性,并与肽YY(PYY)并行作用(4-6)。从这个意义上讲,GLP-1类似物不仅通过解决血糖控制,还会影响体重和心血管健康,从而重新发现了代谢疾病的治疗方法。目前,GLP-1模拟使用的长期后果超过1.5 -2年看起来很有希望;在已出版的荟萃分析中,
糖尿病是全球范围内影响人类的主要慢性病之一。根据国际糖尿病联合会 (IDF) 发布的一份报告,2021 年糖尿病患者已达 5.366 亿,预计到 2045 年 20 至 79 岁年龄组的患病率将超过 7.832 亿 (1)。超过 90% 的患者患有 2 型糖尿病。在中国,预计有 1.45 亿人患有糖尿病 (2),而在美国,这一数字为 3420 万 (3)。某些测试(例如空腹血糖、2h-PG 和 HbA1c 水平)被视为合适的诊断标准 (4)。美国糖尿病协会建议使用经过验证的工具来识别和筛查受影响的成年人,以评估导致糖尿病发作的风险因素(5)。2 型糖尿病患者的主要病理缺陷包括胰岛素抵抗以及胰腺 b 细胞功能障碍导致的胰岛素分泌受损。此外,还有其他五种病理生理状况会导致糖尿病患者的葡萄糖不耐受。这些包括:脂质毒性、a 细胞产生更多的胰高血糖素、肝脏对胰高血糖素的敏感性增强、肾脏通过葡萄糖转运蛋白 2 对葡萄糖的重吸收增加,以及中枢神经系统对胰岛素抑制作用的抵抗,从而导致食欲失调和体重异常增加。所有这些因素都会使血糖水平维持在高位。加重 2 型糖尿病的其他因素包括糖毒性、炎症和氧化应激。据报道,炎症会改变某些细胞因子和趋化因子的浓度,改变白细胞的数量和活化状态,促进组织纤维化和白细胞凋亡,因此在 2 型糖尿病的病理生理学中至关重要(6-9)。糖尿病的症状包括脱水、视力模糊、突然体重减轻、多尿、多饮和多食。糖尿病患者更容易患心脏、脑和血管疾病。心血管系统疾病是糖尿病患者死亡的主要原因(10)。因此,充分关注糖尿病患者的血糖水平至关重要。定期监测和评估对于维持这些患者的适当血糖水平以及避免不必要的短期和长期并发症都很重要。正常血糖水平因各种因素而异,包括体力活动,70-180 mg/dl 被认为是避免任何突然或逐渐出现的并发症的安全范围(11)。调节和维持最佳血糖水平对于生活质量至关重要。调节得越好,糖尿病慢性并发症的可能性就越小。预防低血糖和高血糖对于有效管理糖尿病非常重要。血糖浓度受多种因素影响,最好使用历史值作为预测输入(3、12)。正确的糖尿病管理需要考虑各种因素,包括量身定制的食物摄入量、药物、胰岛素水平和身体活动,以期实现对每位患者的精确控制。目前,口服药物和胰岛素注射通常用于治疗糖尿病(13)。早期管理风险因素和适当的干预至关重要(12)。本研究旨在支持患者做出医疗或生活方式决策
在开发用于治疗 2 型糖尿病和肥胖症的胰高血糖素样肽 1 受体激动剂 (GLP-1RA) 之前,有数据证实了 GLP-1RA 在特定患者群体中具有心肾益处。在正在进行的试验中,研究人员正在探究这些药物对新适应症的疗效,包括代谢性肝病、外周动脉疾病、帕金森病和阿尔茨海默病。GLP-1 类药物的成功促进了具有独特药代动力学和药效学特征的新分子实体和组合的开发,例如 GIP-GLP-1 受体激动剂 tirzepatide。同时,在研分子如 maritide 可阻断 GIP 并激活 GLP-1 受体,而 retatrutide 和 survodutide 可同时激活胰高血糖素和 GLP-1 受体。在这里,我重点介绍了基于 GLP-1 的药物的有效性证据,同时讨论了安全性数据,重点关注肌肉强度、骨密度和骨折、运动能力、胃肠动力、滞留胃内容物和麻醉、胰腺和胆道疾病以及癌症风险。高效 GLP-1 药物的快速开发以及代谢疾病亚群中新药物的预期分化将为使用个性化医疗方法改善心脏代谢疾病患者的健康提供更多机会。
引言teneligliptin和Remogliflozin是用于管理2型糖尿病(T2DM)的口服抗糖尿病药。teneligliptin是一种二肽基肽酶-4(DPP-4)抑制剂,可增强凝集素激素活性,从而导致胰岛素分泌增加并减少胰高血糖素的释放,从而改善血糖控制。Remogliflozin是一种钠 - 葡萄糖共转运蛋白2(SGLT2)抑制剂,可降低肾葡萄糖吸收,促进尿葡萄糖排泄并降低血糖水平。1,已经探索了十酚素和雷格氟辛的组合,因为其潜在的协同作用在改善单独使用二甲双胍的患者的血糖控制方面的潜在协同作用。一项随机,双盲,主动控制的研究表明,除二甲酸酯(100 mg)和十乙链醇氢化胺水合物(10毫克)每天两次施用的固定剂量组合(FDC)除二甲基蛋白外,还导致了gba型糖蛋白(HBA1C)。这种组合还提供了减轻体重的好处,并且经过良好的耐受性,在研究期间没有报道严重的不良事件。2种分析方法已开发出在药物制剂中同时量化teneligliptin和Remogliflozin的同时定量。例如,已经建立了一种稳定的逆变液色谱(RP-HPLC)方法,以同时以片剂剂型对这些药物同时估算,从而确保质量控制和调节性合规性。其临床概况包括有效3 Remogliflozin于2019年4月在印度获得批准,作为一种新型的SGLT2抑制剂,用于治疗T2DM。
动物模型中预先设定的麻醉方案可能会意外地干扰科学项目的主要结果,因此它们需要考虑特定的研究目标。我们旨在优化糖尿病相关研究中的麻醉方案和动物处理策略,举例说明如何根据个体研究目标调整麻醉方法。亚琛小型猪被用作模型来测试用于糖尿病患者的长效皮肤葡萄糖传感器。总共 6 只动物参加了两到三轮实验。每轮持续 2 个月,每年最多 2 轮。在每一轮中,动物被麻醉 4 次:插入葡萄糖传感器,两次进行胰高血糖素压力测试(GST),最后一次用于移除传感器。将乙酰丙嗪 (ACE) 与美托咪啶 (MED) 以及布托啡诺 (BUT) 和氯胺酮 (KET) 进行了比较,并分析了 4 个参数以确定最佳麻醉方案,包括:镇静水平、麻醉持续时间、对血糖的影响和安全性。ACE-BUT 表现出较弱的镇静作用,但减少了总体实验时间、最大限度地降低了麻醉风险并且对葡萄糖代谢的干扰最小。虽然厌恶行为被完全消除,但并未客观评估本研究中采用的动物调理和处理策略所获得的改善。根据分析的参数,当亚琛小型猪专门用作糖尿病相关研究的模型时,乙酰丙嗪的使用效果更佳,尽管对小型猪的麻醉建议并非如此。
儿童生长激素缺乏症 (GHD): ❖ Genotropin ® 、Norditropin ® 、Ngenla ™ 、Skytrofa ® 、Sogroya ® 生长速度:< 5 cm/年 目前身高:低于同年龄和性别的平均值 ≥ 2 个标准差 (SD) 或低于同年龄和性别的第 5 百分位数 骨龄:比实际年龄至少落后一年 骨骺:如果年龄在 10 岁以上,则确认生长板开放 诊断评估(以下之一): • 对 GH 激发试验(例如精氨酸、可乐定、胰高血糖素、胰岛素和左旋多巴)的两次低于正常反应:确认刺激试验,血清 GH 峰浓度低于 10 ng/ml;或 • 一次异常 GH 测试就足够了,并且患者有明确的 CNS 病理、多种垂体激素缺乏症 (MPHD)、放射史或影响 GH 轴的遗传缺陷;或 • GH 激发试验反应低于正常(血清 GH 峰值浓度低于 10ng/ml),且血清胰岛素样生长因子 1(IGF-I)和/或胰岛素样生长因子结合蛋白 3(IGFBP3)水平低于正常 排除条件: • 排除特发性身材矮小 (ISS)(出生体重正常且 GH 充足) • 排除其他垂体激素缺乏症(例如甲状腺功能减退症、慢性缺血性疾病)
图2 PTM研究中的关键范例。在所有面板中(以及本文中的其他数字),用浅红色显示了修改,绿色的蛋白质底物,蓝色的作者,黄色的橡皮擦和紫罗兰的读者。(a)通过蛋白质磷酸化调节酶糖原磷酸化酶的糖原降解活性。该酶的磷酸化和去磷酸化最终受激素胰高血糖素和胰岛素调节,通过用虚线箭头示意性地指示的信号通路。(b)蛋白质泛素化作为26S蛋白酶体降解的信号。泛素化反应是由由E1,E2和E3蛋白组成的酶促级联反应,需要ATP。底物上的Degron基序通过与E3连接酶进行物理相互作用来促进泛素化。poly(ubiquityl)atted底物通过26S蛋白酶体内的受体蛋白识别,展开和降解。(c)通过组蛋白代码调节染色质结构和基因表达。组蛋白尾部的蛋白质修饰是由作者酶安装的,由橡皮擦酶除去,并被读取器蛋白识别。(d)基于面板C的PTMS调节蛋白质的一般方案。(E)从单个蛋白质编码基因产生多种蛋白质成型的变异来源。单个基因可以剪接以产生多种同工型,可以通过差异PTM模式进一步多样化。该图中省略的蛋白质成型多样性的其他来源包括,例如,单核苷酸多态性和替代翻译起始位点。ac,乙酰化;我,甲基化; P,磷酸化; UB,泛素。
由于地球的旋转,自然环境表现出接近24小时的浅黑色昼夜周期。为了适应这种能量摄入模式,生物体在长时间(称为昼夜节律或生物时钟)中形成了24小时的节奏昼夜周期。随着生物钟研究的逐步发展,越来越明显的是,昼夜节律的破坏与2型糖尿病的发生密切相关(T2D)。为了进一步了解T2D和生物钟的研究进展,本文回顾了生物钟与葡萄糖代谢之间的相关性,并分析了其潜在机制。基于此,我们讨论了导致昼夜节律中断及其对发展T2D风险的影响的潜在因素,旨在探索未来预防和治疗T2D的新的可能的干预措施。为了适应这种变化,人体形成了涉及各种基因,蛋白质和其他分子的内部生物时钟,为了适应这种变化。主要机制是以时钟/BMAL1异二聚体为中心的转录翻译反馈回路。构成该循环的重要昼夜节律基因的表达可以调节与T2DM相关的血糖性状,例如葡萄糖摄取,脂肪代谢,胰岛素分泌/胰素食的分泌和敏感性,以及各种外围组织和器官的敏感性。此外,在昼夜节律下的睡眠,光和饮食因素也会影响T2DM的发生。
糖尿病是一种广泛的代谢障碍,是胰岛素抵抗和胰岛素分泌受损的结果。可修改的因素,例如饮食,体育锻炼和体重在预防糖尿病中起着至关重要的作用,目标干预措施可将糖尿病风险降低约60%。高蛋白消耗量高于建议每天0.8 g/kg体重的摄入量,经常与糖尿病风险有关。但是,饮食蛋白与糖尿病之间的关系是多方面的。观察性研究将高的总和动物蛋白摄入量与2型糖尿病的风险增加联系在一起,尤其是在肥胖女性中。较高的分支链氨基酸水平(BCAA)可能是由于饮食摄入,蛋白质分解以及分解代谢受损而导致的,是心脏代谢风险和胰岛素抵抗的强有力预测指标。具有将BCAA与胰岛素抵抗联系起来的几种机制。另一方面,干预研究表明,高蛋白饮食可以支持体重减轻并改善心脏代谢危险因素。但是,对胰岛素敏感性和葡萄糖稳态的影响并不直接。蛋白质和氨基酸刺激胰岛素和胰高血糖素的分泌,影响葡萄糖水平,但慢性作用仍然不确定。这项简短的叙述性评论旨在提供有关增加的饮食蛋白摄入量,氨基酸,胰岛素抵抗和2型糖尿病之间关系的更新,并描述针对2型糖尿病的蛋白质建议。
