羟基磷灰石(HA)已获得了一种在多种生物医学领域(如骨科和牙科)中广泛利用的生物陶瓷的认可。本研究的目的是将羟基磷灰石与Rohu鱼骨分离,并将其整合到具有牙科使用潜力的生物材料中。纳米复合膜。SEM研究将HA确定为纳米球,晶体尺寸低于30 nm。掺入PEGDMA中时,这些纳米颗粒会聚集,可能会破坏聚合物链相互作用并影响膜的机械性能。从经受较高温度钙化的鱼骨获得的XRD模式表现出高度强和尖锐的峰,表明去除了有机部分。FTIR结果证实,由于成功的自由基聚合反应,碳对碳双键的消失。PEGDMA和IRGACURE 2952(86.1409 kJ/mol)的融合焓高焓建议,他们需要高能量才能熔化,而其放热结晶焓(21.35378 kJ/mol)表示,固化后热量释放。添加羟基磷灰石减少了这些焓,表明更容易熔化和凝固,这可能有助于加工为生物医学应用开辟新的可能性,尤其是在牙科中。
需要有效的临床举措来开发心血管疾病的治疗方法,尤其是心肌梗塞这种最常见的心血管疾病。各种研究都集中在改进再生受损心脏组织的方法上。通过这种方式,工程心脏补片已被用作促进心肌再生的一种有前途的技术。传统的心脏补片无法提供心脏组织的有序结构和电导性。对人体心脏天然细胞外基质 (ECM) 的电导性和有序结构的生物模拟是制造心脏补片的关键因素。在这方面,应采用新方法来制造导电和结构化的心脏补片。合成和天然聚合物已显示出适合生产心脏补片的良好生物相容性和生物利用度特性。本篇小型评论试图提供有关在新型心脏补片中应用海藻酸盐、壳聚糖和聚乙二醇 (PEG) 的最新趋势和挑战。
呼吸防护:如果通风不足,请穿呼吸防护。气体过滤器用于有机化合物的气/蒸气(沸点> 65°C,e。g。g。EN14387 A型)手动保护:合适的耐化学耐化学安全手套(EN ISO 374-1),直接接触延长(推荐:保护性Index 6,protective Index 6,相应的> 480分钟> 480分钟,> 480分钟的EN ISO 374-1)硝酸橡胶(0.4毫米),氯普伦橡胶(0.5毫米),丁基橡胶(0.7毫米)等由于类型多样性的多样性,应观察到制造商的使用指示。补充说明:规格基于测试,文献数据和手套制造商的信息,或者以类比从相似的物质中得出。由于许多条件(例如温度)必须考虑到,实践中化学保护手套的实际用法可能比通过测试确定的渗透时间短得多。眼睛保护:带有侧挡的安全眼镜(框架护目镜)(例如en 166)身体保护:必须根据活动和可能的暴露选择身体保护,例如围裙,保护靴子,化学保护套装(根据EN 14605在溅起或EN ISO 13982的情况下,如果在灰尘的情况下)。根据良好的工业卫生和安全实践,一般安全和卫生措施处理。除了规定的个人保护设备外,还需要穿着封闭的衣服。
1,20 , Donatella Bignardi 8,20 , Paolo Borrelli 9,20 , Luisa Bommarito 10,20 , Moira Busa 11,20 , Paolo Calafiore 12,20 , Valentina Carusi 5,20 , Massimo Cinquini 13,20 , Gabriele Cortellini 14,20 , Roberto Cocchi 15,20 , Francesca D'Auria 16,20 , Francesco De Caro 2,20 , Antongiulio Demonte 17,20 , Elisabetta Di Leo 18,20 , Michela Di Lizia 12,20 , Alessia Di Rienzo 5,20 , Federica Fumagalli 19,20 , Paola Kihlgren 16,20 , Fabio Lodi Rizzini 13,20 , Donatella Macchia 21,20 , Giuseppina Manzotti 22、亚历山德罗·玛丽亚·马拉 7、帕尔米罗·米莱托 1.20 pm、萨布丽娜·米埃塔 10、马塞洛·蒙塔尼 16、埃乌斯塔基奥·内蒂斯 23、埃莉诺拉·努塞拉 5.6、西尔维娅·佩韦里 16、丹尼尔·皮维塔 1.20 pm、马里奥·皮里西 24、朱塞佩·A·拉米雷斯 3.4、费德里卡·里沃尔塔 25、安吉拉·里齐 5.6、阿方索·萨沃亚 26、阿方索·佩迪奇尼 26、亚历山德罗·斯卡帕 11、马塞洛·赞比托 27、朱利安娜·齐萨 28、莫娜-丽塔·亚库 b 3。
摘要:这项研究研究了波特兰水泥粘贴的水合,微结构,自动收缩率,电阻率和机械性能与PEG-PPG Triblock共聚物进行了不同的分子量。使用VICAT测试和等温量热法检查了包括设定时间和水合热量在内的幼年特性。分别使用热重分析(TGA)和氮吸附分析了水合产物和孔径分布。使用压缩强度测试和电化学阻抗光谱(EIS)评估了机械性能和电阻率。表明,由于共聚物在共聚物的分子结构中存在疏水块(PPG),因此添加共聚物会降低水泥糊孔溶液的表面张力。在对照糊中的设定时间和水合热以及与共聚物修饰的粘贴相对相似。结果表明,共聚物能够减少糊状物中的自体收缩,这主要是由于孔隙溶液溶液表面张力的降低。TGA显示与共聚物修饰的糊剂的水合度略有增加。在与共聚物修饰的糊状物中降低了抗压强度,该粘贴量显示出空气量增加的共聚物。添加共聚物不会影响糊状物的电阻率,除非有大量的空气空隙(充当电绝缘体)。
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
溶液中,用于制造新一代电子和光电子设备,其特点是机械灵活性、重量轻和制造技术廉价。在这个领域,这些碳同素异形体受到推崇,不仅是因为它们迷人的结构和物理特性,还因为它们最初是少数几个由于其强电子亲和力而能够显示大量 n 型传输的分子系统之一。然而,在其原始形式下,C 60 分子溶解度非常低,不能提供最初设想的使用灵活性。富勒烯化学 1 的发展以及使用这些方法合成的大量可溶液加工的衍生物,最终推动了它们的使用,也激发了一大批科学家和工程师对这些分子的热情。此时,富勒烯已成为多种器件的常见组成部分,其中最受欢迎的是苯基-C 61 -丁酸甲酯 (PCBM) 衍生物 2,它不仅能与其他有机
1 旁遮普大学化学学院,拉合尔 54590,巴基斯坦;mabdulqadir@gmail.com(MAQ);saghirtalib@gmail.com(SA) 2 阿卜杜勒阿齐兹国王大学科学与艺术学院化学系,拉比格 21911,沙特阿拉伯 3 教育大学科学技术部化学系,学院路,拉合尔 54770,巴基斯坦 4 药物化学,制药和药理科学系,雷加医学研究所,鲁汶天主教大学,B-3000 鲁汶,比利时;michiel.vanmeert@kuleuven.be(MV);umirzapk@gmail.com(MUM) 5 温莎大学化学与生物化学系,温莎,ON N9B 3P4,加拿大 6 萨希瓦尔大学化学系,萨希瓦尔 57000,巴基斯坦; abdul_hameed8@hotmail.com * 通信地址:shabnamshahzadkhan@gmail.com (SS);iaaalharte@kau.edu.sa (RDA);mahmoodresearchscholar@gmail.com 或 mahmood.ahmed@ue.edu.pk (MA)
1该指南是由符合药物评估与研究中心(CDER),食品和药物管理局的合规办公室编写的。2出于本指南的目的,“高风险药物成分”是通过历史经验,与其他药物成分相比,通过历史经验,它们的DEG或EG污染风险更高。对于简洁起见,本指南的标题并未列出所有高风险药物成分。3许多(但不是全部)高风险药物成分具有美国药房或国家配方(USP-NF)专着,其中包括对DEG和EG进行测试。USP-NF是指两种汇编,美国药房(USP)和国家配方(NF)的组合。除了确定这些产品的强度,质量和纯度的其他测试和方法外,USP-NF专着为其中列出的药物提供了身份测试。本指南标题中按名称列出的高风险药物组件的USP-NF专着包括DEG和EG限制测试作为特定识别测试的一部分。还有其他高风险药物成分,其相应的USP-NF专着包括在识别测试或杂质测试中进行DEG和EG的测试,例如山梨糖醇山梨糖素溶液,非结晶山梨糖醇溶液,聚乙烯甘油甘油和二甲基乙二醇乙二醇。FDA期望制造商确保在确定需要执行哪种测试时引用当前的USP-NF。4参见,例如,谁敦促保护儿童免受污染药物的行动,世界卫生组织,世界卫生组织,2023年1月23日,可访问https://www.who.int/news/news/news/item/23-01-01-2023-Who-Ution-action-Action-Action-Action-action-to-protect-children-from-from-from--污染物。
本文档是公认的手稿版本的已发表作品,该作品以最终形式出现在Langmuir,版权所有©美国化学学会之后,在出版商的同行评审和技术编辑后。要访问最终编辑和发布的工作,请参见http://dx.doi.org/10.1021/la302799s