轻微照射的迷你纽扣具有潜在的密度与托管大量液态水海洋(“ Hycean”行星)一致。已经提出了在大气中同时存在氨(NH 3)的存在作为这种世界的细节。JWST观察K2-18b(原型Hycean)发现了CO 2的存在,而NH 3至<100 ppm的耗竭;因此,已经推断出该星球可以容纳液态水域。相比之下,气候建模表明,包括K2-18B在内的许多迷你纽扣可能太热了,无法容纳液态水。,我们通过研究岩浆海洋对迷你北极大气化学的影响,提出了一种解决观测和气候建模之间的差异的解决方案。我们证明,大气NH 3耗竭是岩浆在还原条件下岩浆中氮种的高溶解度的自然结果。恰好是厚氢包膜与熔融行星表面通信的条件。岩浆海洋模型将K2-18b至3σ的当前JWST光谱重现,这表明这是对当前观察的可信解释,就像主持液态水海洋的星球一样。可以用来排除岩浆海洋模型的光谱区域包括>4μm区域,其中CO 2和CO特征主导:Magma Ocean模型表明,与自由化学检索相比,系统的CO 2 / CO比率低于自由化区域的估计,这表明对该光谱区域的更深入观察到,该光谱区域的更深入的观察可能能够区分液态水和Magma oni-Neptunes的海洋。
图2。平面和Triplanar网络的想法。(a)将轴向平面网络从轴向图像进行训练的CA,CCSA和SCSA网络的分割结果组合在一起以产生结果。同样,我们可以创建冠状合奏和矢状 - 合奏。(b)Triplanar网络的概述,在该网络中,从轴向,冠状图像和矢状图像中训练的单个注意网络(例如,CA网络)产生的分段结果合并为生成结果。通过在三个正交平面训练的CCSA和SCSA注意网络中生成类似的分段结果。
用于半分割的大多数现有知识蒸馏方法着重于从原始特征中提取各种复杂知识。但是,这种知识通常是手动设计的,并且像传统功能工程一样依赖于先前的知识。在本文中,我们旨在提出一种使用RAW功能的简单有效的功能蒸馏方法。为此,我们重新审视了功能蒸馏中的开创性工作,Fitnets可以将平方误差(MSE)损失(MSE)损失最小化。我们的实验表明,在某些情况下,这种幼稚的方法可以产生良好的结果,甚至超过了一些精心设计的方法。但是,它需要仔细调整蒸馏损失的重量。通过将fitnets的损失函数分解为差异项和角度差项,我们发现角度差异项的重量受教师特征和学生特征的幅度的影响。我们通过实验表明,角度差异项在特征蒸馏中起着至关重要的作用,而不同模型产生的特征的大小可能会有很大变化。因此,很难确定各种模型的适合减肥体重。为了避免角度蒸馏术语的重量受到特征的影响,我们提出了角度蒸馏,并探索沿不同效率尺寸的蒸馏角度信息,以进行语义分割。广泛的例子表明,我们的简单方法对超级参数表现出极大的效果,并实现了语义细分的最先进的蒸馏性能。
摘要:本文讨论了一种针对脑肿瘤的医学图像分割改进模型,该模型是一种基于U-Net架构的深度学习算法。在传统U-Net基础上,引入GSConv模块和ECA注意力机制,提升模型在医学图像分割任务中的表现。通过这些改进,新的U-Net模型能够更高效地提取和利用多尺度特征,同时灵活地聚焦重要通道,从而显著提高分割效果。在实验过程中,对改进的U-Net模型进行了系统的训练和评估。通过观察训练集和测试集的loss曲线,我们发现两者的loss值在第8个epoch之后迅速下降到最低点,随后逐渐收敛并趋于稳定。这表明我们的模型具有良好的学习能力和泛化能力。此外,通过监测平均交集比(mIoU)的变化,我们可以看到在第35个epoch之后,mIoU逐渐趋近于0.8并且保持稳定,这进一步验证了模型的有效性。与传统U-Net相比,基于GSConv模块和ECA注意机制的改进版本在分割效果上表现出明显的优势,特别是在脑肿瘤图像边缘的处理上,改进模型能够提供更为准确的分割结果,这一成果不仅提高了医学图像分析的准确率,也为临床诊断提供了更可靠的技术支持。综上所述,本文提出的基于GSConv模块和ECA注意机制的改进U-Net模型为脑肿瘤医学图像分割提供了一种新的解决方案,其优越的性能有助于提高疾病的检测和治疗效果,在相关领域具有重要的意义。未来希望进一步挖掘该方法在其他类型医学图像处理中的应用潜力,推动医学影像事业的发展。
在这项研究中,研究了叶黄素和富马酸亚铁对黄河鲤鱼(Cyprinus carpio)的影响,旨在评估皮肤色素沉着,肠道消化酶,肠道微生物多样性和生长性能。设计了三种实验饮食,包括对照组,一组150mg/kg叶黄素)以及叶黄素和富马酸铁蛋白酶混合物(150mg/kg叶黄素和100mg/kg富马酸铁酸铁酸铁酸酯)。用实验饮食喂食42天的鲤鱼(n = 135; 25.0±2.0g)。结果表明,与对照组相比,与对照组(P <0.05相比,与蓝色(b*),颜色差异(δe)和Chroma(δe)和乳头较高的值相比,蛋白质的无关指数(ISI)和内脏指数(ISI)和内脏指数(VSI)增加,伴随着蓝色(B*),色差(δe)和Chroma(CH*)的较高价值(与对照组相比(P <0.05)相比,身体颜色的显着变化。同时,在混合物组中观察到淀粉酶,脂肪酶和胰蛋白酶的较高活性(p <0.05)。高通量测序和维恩图表明,叶黄酸或亚铁富马酸盐对鲤鱼的肠道微生物群具有明显的影响。与对照组相比,与混合物组相比,用混合物组的鲤鱼中的静脉细菌和黄杆菌的丰度显着增加。总而言之,在饲料中添加叶黄素和富马酸亚铁可以改变黄河鲤鱼的皮肤色素沉着和肠道微生物组成,从而增强鱼类的着色效果和消化功能。这些发现为优化饲料配方和水产养殖管理提供了宝贵的见解,这可以有助于提高黄河鲤鱼的质量和农业效率。
近年来,已经提出了连续的潜在空间(CLS)和DISCRETE潜在空间(DLS)深度学习模型,以改善医学图像分析。但是,这些模型遇到了不同的挑战。cls模型捕获了复杂的细节,但由于其强调低级特征,因此在结构表示和易男性方面通常缺乏解释性。尤其是,DLS模型提供了可解释性,鲁棒性以及由于其结构性潜在空间而捕获粗粒度信息的能力。但是,DLS模型在捕获细粒细节方面的功效有限。为了确定DLS和CLS模型的局限性,我们采用了Synergynet,这是一种新型的瓶颈体系结构,旨在增强现有的编码器 - 核编码器分割框架。Synergynet无缝地将离散和连续的表示形式整合到利用互补信息中,并成功保留了细学的表示的细节。我们对多器官分割和CAR-DIAC数据集进行的实验实验表明,SynergyNet的表现优于包括Transunet:Transunet:DICE评分提高2.16%的其他最新方法,而Hausdorff分别分别提高了11.13%。在评估皮肤病变和脑肿瘤分割数据集时,我们观察到皮肤病变分割的交互分数的1.71%的重新提高,脑肿瘤分割的增长率为8.58%。我们的创新方法为增强医学图像分析关键领域中深度学习模型的整体性能和能力铺平了道路。
但是现在,尽管文字处理尚未完成分析,但可用性的前沿已经因为新应用程序和新界面技术的开发和引入而不断向前推进。电子邮件和计算机会议支持等通信应用程序所带来的可用性挑战远比文字处理向非程序员扩展所带来的挑战更加多样化。在当前技术中,多个用户通过极其不同的工作站类型协作访问多个应用程序。就在这些新领域的可用性问题得到阐述和探索的同时,前沿原型正在引入手势(例如手写)和语音输入以及交互式视频输出。这些新发展正在整个行业中以更快的速度、更广泛地发生,并随着时间的推移影响更多的用户。
卷积神经网络(CNN)在培训数据集代表预期在测试时遇到的变化时,可以很好地解决监督学习问题。在医学图像细分中,当培训和测试图像之间的获取细节(例如扫描仪模型或协议)之间存在不匹配和测试图像之间的不匹配时,就会违反此前提。在这种情况下,CNNS的显着性能降解在文献中有很好的记录。为了解决此问题,我们将分割CNN设计为两个子网络的串联:一个相对较浅的图像差异CNN,然后是将归一化图像分离的深CNN。我们使用培训数据集训练这两个子网络,这些数据集由特定扫描仪和协议设置的带注释的图像组成。现在,在测试时,我们适应了每个测试图像的图像归一化子网络,并在预测的分割标签上具有隐式先验。我们采用了经过独立训练的Denoising自动编码器(DAE),以对合理的解剖分段标签进行模型。我们验证了三个解剖学的多中心磁共振成像数据集的拟议思想:大脑,心脏和前列腺。拟议的测试时间适应不断提供绩效的改进,证明了方法的前景和普遍性。对深CNN的体系结构不可知,第二个子网络可以使用任何分割网络使用,以提高成像扫描仪和协议的变化的鲁棒性。我们的代码可在以下网址提供:https://github.com/neerakara/test- time- aptaptable-neural-near-netural-netural-networks- for- domain-概括。
摘要。分析建筑模型的可用面积、建筑安全性或能源分析需要空间和相关对象的功能分类数据。自动化空间功能分类有助于减少输入模型准备工作量和错误。现有的空间功能分类器使用空间特征向量或空间连通性图作为输入。深度学习 (DL) 图像分割方法在空间功能分类中的应用尚未被研究。作为解决这一差距的第一步,我们提出了一个数据集 SFS-A68,它由 68 个公寓楼空间布局的数字 3D 模型生成的输入和地面真实图像组成。该数据集适用于开发用于空间功能分割的 DL 模型。我们使用该数据集训练和评估基于迁移学习和从头开始训练的实验空间功能分割网络。测试结果证实了 DL 图像分割对空间功能分类的适用性。
越来越多的公共数据集显示出对自动器官细分和图检测的显着影响。但是,由于每个数据集的大小和部分标记的问题,以及对各种肿瘤的有限侵入,因此所得的模型通常仅限于细分特定的器官/肿瘤,以及ig- ignore ignore ignore的解剖结构的语义,也可以将其扩展到新颖的Domains。为了解决这些问题,我们提出了剪辑驱动的通用模型,该模型结合了从对比的语言图像预训练(剪辑)到细分模型中学到的文本嵌入。这个基于夹子的标签编码捕获了解剖学关系,使模型能够学习结构化特征嵌入和段25个器官和6种类型的肿瘤。提出的模型是从14个数据集的组装中开发的,使用总共3,410张CT扫描进行培训,然后对3个附加数据集进行了6,162个外部CT扫描进行评估。我们首先在医疗细分十项全能(MSD)公共排行榜上排名第一,并在颅库(BTCV)之外实现最先进的结果。此外,与数据集特异性模型相比,大学模型在计算上更有效(更快6英制),从不同站点进行CT扫描更好,并且在新任务上表现出更强的传输学习绩效。