我叫Kim Libera,我是地球科学家。我的宠物项目之一是研究替代方法,从苛刻的农药转移到更多的生物学或非致命的机械陷阱中。我主张,我们从用来用作农药的任何苛刻的有毒化合物迁移出来,这是两个原因。原因是这些化合物,它们是我们可以考虑的最有毒的化合物之一,它可以沿食物链旅行,我当然不希望它们进入野生动植物,饮用水或花园土壤。原因二,这些有毒化合物很有可能导致各种癌症和神经系统疾病。我的前同学,其家庭从事农药/杀虫剂业务的工作受到淋巴瘤困扰。我想尽我所能保护野生动植物。我敦促国家和深处思考开箱即用并迁移到更多的生物学手段。这种方法可能包括降解的化合物,例如肥皂/油,硅藻土,机械陷阱,基因工程。我提供了一个在英国使用的示例,他们使用梗和贝赛猎犬和水獭来应对害虫。一家名为Oxitec的公司正在通过基因工程来解决瘟疫昆虫物种,以减少数量。中欧通过消除宿主作为目标来消除野生动植物中的狂犬病。这被称为“思考”开箱即用。
脑肿瘤的特征是脑组织异常生长,因其对全球发病率和死亡率的影响而成为一项重大的医学挑战。脑肿瘤有多种表现形式,从良性到恶性,后者尤其具有侵袭性且易于转移 (1)。脑肿瘤的病因复杂,包括放射线暴露、遗传易感性和家族史等因素,因此需要早期发现和准确诊断 (2)。在脑肿瘤诊断领域,磁共振成像 (MRI) 因其更高的空间分辨率和软组织对比度而成为优于计算机断层扫描 (CT) 的检查方式。这使得 MRI 成为脑肿瘤病例术前评估、治疗管理和生存预测所必需的 (3)。然而,MRI 扫描中传统的手动分割方法虽然是黄金标准,但却存在固有的效率低下和主观差异性,因此有必要探索自动化技术 (4、5)。近年来,深度学习模型(例如 Ma 等人提出的模型)在自动脑肿瘤分割方面取得了重大成功。这些模型擅长捕捉局部和全局上下文特征,但通常会遇到梯度消失和过拟合的问题,尤其是在较深的网络层中。Kumar 等人(7)通过将 ResNet50 与全局平均池化相结合来解决这些问题,以增强各种肿瘤类型的肿瘤分类。在此基础上,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。我们的方法与现有技术不同,它集成了多尺度空间蒸馏和伪标记策略。这种方法不仅克服了以前模型中出现的梯度消失和过拟合的局限性,而且还解决了灾难性遗忘问题——这是连续学习模型中常见的挑战。与依赖于保留数据的传统方法不同,我们的研究引入了一种先进的连续学习框架,用于从 MRI 图像中分割脑肿瘤,如图 1 所示。
•和第三,如果不使用EPIC选项,我们将研究连接到EPIC系统的辅助系统和相关部门,例如PACS以及可能的放射学,实验室或药房系统。这些辅助系统是医院的合作伙伴组织,可能存在遗传的风险,或者是与Epic接触的内部医院申请。但是,今天可能无法将代理放置在设备上以启用保护,因此,仅使用Epic桥接的辅助系统与EPIC的接口,因此可以利用这些策略性接口限制访问权限。
关于OLA电动移动性Ola Electric Mobility Limited是印度领先的电动汽车(EV)制造商,专门研究电动汽车及其组件(包括电池电池)技术和制造的垂直整合。操作以Ola FutureFactory为中心,在该操作中,电动电动汽车和关键组件(例如电池组,电动机和车辆框架)的生产。Ola的研发工作涵盖了印度,英国和美国,重点是电动汽车产品和核心组件的创新。Ola还在泰米尔纳德邦(Tamil Nadu)开发了一个广泛的EV HUB,其中包括Ola FutureFactory和即将推出的Ola Gigafactory。该枢纽由OLA位于班加罗尔的电池创新中心(BIC)支持,该中心致力于推进电池和电池技术。Ola保持了一个直接到客户的分销网络,在印度各地拥有750多个体验中心,以及强大的在线业务,使Ola Electric成为该国最大的公司拥有的汽车体验中心网络。
计算机视觉的抽象工业应用有时需要检测数字图像中小组像素的非典型物体。这些对象很难单一单,因为它们很小并且随机分布。在这项工作中,我们使用新型基于ANT系统的聚类算法(ASCA)提出了一种图像分割方法。ASCA对蚂蚁的觅食行为进行建模,蚂蚁的觅食行为在搜索高数据密度区域的数据空间中移动,并在其路径上留下信息素跟踪。信息素图用于识别簇的确切数量,并使用信息素gra-denient将像素分配给这些簇。我们将ASCA应用于数字乳房X线照片中的微钙化,并将其与最先进的聚类算法进行比较,例如1D自组织图,k -meanss,模糊C-Meanss和可能的模糊模糊C-Meanss。ASCA的主要优点是,群集的数量不需要先验。实验结果表明,在检测非典型数据的小簇时,ASCA比其他算法更有效。
文本对图像(T2I)合成是一项艰巨的任务,该任务是对文本和图像域及其关系进行建模。最近作品实现的图像质量的实质性改进为Nuberon应用程序铺平了道路,例如语言辅助图像编辑,计算机辅助设计,基于文本的图像检索和培训数据增强。在这项工作中,我们提出了一个简单的问题:与逼真的图像一起,我们是否可以以一种不受影响的方式获得任何有用的副产品(例如前景 /背景或多类分割掩码,检测标签,检测标签),这也将使其他计算机视觉任务任务和应用受益?试图回答这个问题,我们探索了从给定文本中的逼真的图像及其相应的前景 /背景分割掩码。为了实现这一目标,我们与GAN一起实验了共进行分割的概念。具体而言,提出了一种名为“共裂”启发的GAN(COS-GAN)的新型GAN结构,该结构同时从不同的噪声矢量中同时生成两个或多个图像,并利用图像特征之间的空间关注机制来生成逼真的分段掩码,以生成生成的Im-Im-Im-Im-Im-Im-Im-Im-Im-Im-Im-Agens。这种架构的优点是两倍:1)生成的分割掩码可用于专注于前景和背景,以改善生成的图像的质量,2)分段蒙版可以用作其他任务的训练目标,例如访问本地化和分割。在CUB,Oxford-102和可可数据集上进行的广泛实验表明,Cos-Gan能够改善视觉质量,并为发电图像提供可靠的前景 /背景掩码。
注释歧义由于固有的数据不确定性,例如医学扫描中的界限模糊以及不同的观察者专业知识和偏好已成为训练基于深度学习的医学图像模型的主要观点。为了解决这个问题,普遍的做法是从不同专家那里收集多个注释,导致多评价医学图像分割的设置。现有的作品旨在将不同的注释合并到“地面真实”中,而在众多医疗环境中通常无法实现,或者产生不同的结果,或产生与个人专家评估者相对应的个性化结果。在这里,我们提出了一个更雄心勃勃的多评价医学图像细分的目标,即遵守多元化和个性化结果。指定,我们提出了一个名为d-persona的两个阶段框架(第一个d iversification,然后是角色lization)。在第I阶段,我们利用多个给定注释来训练一个可能性的U-NET模型,并具有约束损失,以证明预测多样性。以这种方式,在第I阶段建造了一个共同的空间,其中不同的潜在代码表示多样化的专家意见。然后,在第二阶段,我们设计了多个基于注意力的投影头,以适应来自共享潜在空间的相应专家提示,然后执行个性化的医疗图像细分。我们评估了内部鼻咽癌数据集和公共肺结核数据集(即LIDC-IDRI)的拟议模型。我们的代码将在https://github.com/ycwu1997/d-persona上发布。的实验实验表明,我们的D-Persona可以同时获得多元化和个性化的结果,从而实现了多评位者医疗图像细分的新SOTA性能。
摘要 — 对于病理病例和在不同中心获取的图像(而不是训练图像),用于医学图像分割的深度学习模型可能会意外且严重地失败,其标记错误违反了专家知识。此类错误破坏了用于医学图像分割的深度学习模型的可信度。检测和纠正此类故障的机制对于安全地将这项技术转化为临床应用至关重要,并且很可能成为未来人工智能 (AI) 法规的要求。在这项工作中,我们提出了一个值得信赖的 AI 理论框架和一个实用系统,该系统可以使用基于 Dempster-Shafer 理论的回退方法和故障安全机制来增强任何骨干 AI 系统。我们的方法依赖于可操作的可信 AI 定义。我们的方法会自动丢弃由骨干 AI 预测的违反专家知识的体素级标记,并依赖于这些体素的回退。我们在最大的已报告胎儿 MRI 注释数据集上证明了所提出的可信 AI 方法的有效性,该数据集由来自 13 个中心的 540 个手动注释的胎儿大脑 3D T2w MRI 组成。我们值得信赖的 AI 方法提高了四个骨干 AI 模型的稳健性,这些模型适用于在不同中心获取的胎儿脑部 MRI 以及患有各种脑部异常的胎儿。我们的代码可在此处公开获取。
生成的零拍学习(ZSL)学习了一个生成器来合成看不见类的视觉样本,这是推进ZSL的有效方法。然而,现有的发电方法依赖于高斯噪声和预定义的语义原型的条件,这限制了仅在特定的看到类中优化的发电机,而不是对每个视觉实例进行特征,从而导致概括不良(例如,过度适用于可见的类)。为了解决这个问题,我们提出了一种新颖的视觉启动动态语义原型方法(称为VADS),以增强发电机来学习准确的语义 - 视觉映射,以充分利用视觉效果的知识为语义条件。详细说明,VADS由两个模块组成:(1)视觉吸引域知识学习模块(VDKL)了解视觉特征的偏见和全局先验(称为域的视觉知识),这些偏见取代了纯净的高斯噪声,以提供更丰富的先验噪声信息; (2)以视觉为导向的语义更新模块(VOSU)根据样本的视觉表示更新语义原型。最终,我们将它们的输出作为动态语义原型串联,作为发电机的条件。广泛的实验表明,我们的VAD在三个突出的数据集上实现了上升的CZSL和GZSL prounperces,并且在Sun,Cub和Awa2上分别胜过其他最先进的方法,其平均分别增加了6.4%,5.9%,5.9%和4.2%。