Area (Kg/Kg/) Yield (Kg/Kg/ha) 60,000 281 60,000 60,000 140,000.5 DR Congo 200,000,000,000,000,000,009,009,037,037,0 160,000,000,000,000,000,000,000,000,000.5 Tanzania 229,000, 216,000,000,000,000,288, 288,000,042,0 - 523,184 – Africa 2,440,684,408.5 2,440,684,384,684,684 368资料来源:ICO,2015年;联合国,2018年; USDA,2019a。
建议的工作流程 建议的工作流程是,该人应该在网站上申请证书,该网站将首先确定是否存在基准残疾。智能助手和视频分析将有助于做出这一决定。将设置一个网络摄像头,其中包含预先指定的问题和预先指定的带有说明的协议。提供用于评估残疾的视频指南和说明手册将有助于以足够的信心得出结论,即患者是否有基准残疾。上诉机构将处理任何上诉。如果它确实符合基准残疾的条件,AI 将填写 WHO 的 ICF 核心集以创建功能档案;使用远程医疗来衡量能力和绩效,这可能取决于环境和社会规范
摘要:本文介绍了一种基于二阶 delta-sigma 调制器的紧凑型低功耗 CMOS 生物电信号读出电路。该转换器使用电压控制的基于振荡器的量化器,通过单个无运算放大器的积分器和最少的模拟电路实现二阶噪声整形。已经使用 0.18 µ m CMOS 技术实现了原型,其中包括相同调制器拓扑的两种不同变体。主调制器已针对 300 Hz–6 kHz 频段的低噪声神经动作电位检测进行了优化,输入参考噪声为 5.0 µ V rms ,占地面积为 0.0045 mm 2 。另一种配置具有更大的输入级以降低低频噪声,在 1 Hz–10 kHz 频段实现 8.7 µ V rms ,占地面积为 0.006 mm 2 。调制器电压为 1.8 V,预计功耗为 3.5 µ W。
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
现代生活的几乎所有方面都取决于太空技术。多亏了计算机视频的一般和深度学习技术的巨大进步,几十年来,全世界都见证了将深度学习的发展用于解决太空问题的问题,例如自动驾驶机器人,诸如示踪剂,类似昆虫的机器人,类似昆虫的机器人和SpaceCraft的健康监测。这些只是一些在深度学习的帮助下具有高级空间行业的重要例子。但是,深度学习模型的成功需要大量的培训数据才能具有不错的性能,而另一方面,用于培训深度学习模型的公开空间数据集非常有限。当前没有用于基于太空的对象检测或实例分割的公共数据集,部分原因是手动注释对象分割掩码非常耗时,因为它们需要像素级标签,更不用说从空间获取图像的挑战了。在本文中,我们的目标是通过释放数据集以进行航天器检测,实例分割和零件识别来填补这一差距。这项工作的主要贡献是使用太空设置和卫星的图像开发数据集,并具有丰富的注释,包括绑定的航天器和口罩的框架盒对物体部分的水平,这些盒子是通过自动程序和手动努力的混合而获得的。我们还提供了对象检测和Intance Sementation的最新方法作为数据集的基准。可以在https://github.com/yurushia1998/satellitedataset上找到下载建议数据集的链接。
越来越多的公共数据集显示出对自动器官细分和图检测的显着影响。但是,由于每个数据集的大小和部分标记的问题,以及对各种肿瘤的有限侵入,因此所得的模型通常仅限于细分特定的器官/肿瘤,以及ig- ignore ignore ignore的解剖结构的语义,也可以将其扩展到新颖的Domains。为了解决这些问题,我们提出了剪辑驱动的通用模型,该模型结合了从对比的语言图像预训练(剪辑)到细分模型中学到的文本嵌入。这个基于夹子的标签编码捕获了解剖学关系,使模型能够学习结构化特征嵌入和段25个器官和6种类型的肿瘤。提出的模型是从14个数据集的组装中开发的,使用总共3,410张CT扫描进行培训,然后对3个附加数据集进行了6,162个外部CT扫描进行评估。我们首先在医疗细分十项全能(MSD)公共排行榜上排名第一,并在颅库(BTCV)之外实现最先进的结果。此外,与数据集特异性模型相比,大学模型在计算上更有效(更快6英制),从不同站点进行CT扫描更好,并且在新任务上表现出更强的传输学习绩效。
然而,一个限制是,AI系统需要大量高质量数据来最大限度地减少其结果的偏差。在外科领域实施AI的其他担忧是在数据处理和分析时存在保密风险和患者信息完整性丧失的风险。对此,世界卫生组织明确了其在医学领域使用AI的道德立场。他们强调根据正义、仁慈、患者自主和非恶意原则实施AI使用的重要性。关于在医学中使用AI的法律框架,世界上最先进的卫生系统已经出台了新的法规。然而,这一领域在不久的将来仍将不断发展(1,6)。近年来,AR和虚拟现实(VR)在改善外科领域的教学过程方面发挥了重要作用。这些日益普及的技术进步使医学生、住院医生和研究员能够沉浸在模拟和控制的场景中,从而获得培训过程中所需的手术技能和能力。AR 和 VR 的优势包括缩短学习曲线时间、通过不将真实患者暴露于学习目的来减少可能的手术并发症以及使用先前建立和验证过的课程 (8)。同样,
摘要 — 对于病理病例和在不同中心获取的图像(而不是训练图像),用于医学图像分割的深度学习模型可能会意外且严重地失败,其标记错误违反了专家知识。此类错误破坏了用于医学图像分割的深度学习模型的可信度。检测和纠正此类故障的机制对于安全地将这项技术转化为临床应用至关重要,并且很可能成为未来人工智能 (AI) 法规的要求。在这项工作中,我们提出了一个值得信赖的 AI 理论框架和一个实用系统,该系统可以使用基于 Dempster-Shafer 理论的回退方法和故障安全机制来增强任何骨干 AI 系统。我们的方法依赖于可操作的可信 AI 定义。我们的方法会自动丢弃由骨干 AI 预测的违反专家知识的体素级标记,并依赖于这些体素的回退。我们在最大的已报告胎儿 MRI 注释数据集上证明了所提出的可信 AI 方法的有效性,该数据集由来自 13 个中心的 540 个手动注释的胎儿大脑 3D T2w MRI 组成。我们值得信赖的 AI 方法提高了四个骨干 AI 模型的稳健性,这些模型适用于在不同中心获取的胎儿脑部 MRI 以及患有各种脑部异常的胎儿。我们的代码可在此处公开获取。
摘要在为无行为能力的患者做出替代判断时,代理人经常努力猜测患者有能力会想要什么。代理人也可能因(唯一)做出这种决定的责任而感到痛苦。为了解决此类问题,已经提出了一种患者偏好预测因子(PPP),该预测因素将使用算法从人群级别的数据中推断出单个患者的治疗偏好,以了解具有相似人口统计学特征的人的已知偏好。然而,批评家们已经表明,即使这种PPP平均比人类替代者更准确,在识别患者偏好方面,拟议的算法仍然无法尊重患者(以前的)自主权,因为它会借鉴“错误的”数据:对于个人而言,这些数据不适合个人的数据,因此他们不适合他们的挑战,并且他们的实际原因是他们的实际原因,或者是实际的,或者是实际上的,或者是实际上的,或者是实际的,或者是实际的,或者是实际的,或者是实际上所依据的,或者是实际的原因。在船上受到这样的批评,我们在这里提出了一种新方法:个性化的患者偏好预测因子(P4)。P4基于机器学习的最新进展,该技术允许包括大型语言模型在内的技术更便宜,更有效地“微调”在特定于人的数据上。与PPP不同,P4将能够从实际上特定于其特定的材料(例如先前的治疗决策)中推断出单个患者的偏好。因此,我们认为,除了在个体水平上比以前提出的PPP更准确,P4的谓词还将更直接地反映每个患者自身的原因和价值观。在本文中,我们回顾了人工智能研究中的最新发现,这些发现表明P4在技术上是可行的,并认为,如果它是开发和适当部署的,则应缓解一些基于自主的主要关注原始PPP的批评者的关注。然后,我们考虑对我们的提案的各种异议,并提供一些暂定的答复。