摘要目的:这项研究的目的是探索和描述美国方法中肌萎缩性侧面硬化症(PALS)的人的增强和替代性交流(AAC)的使用和服务交付经验:横截面数据:通过2021年的匿名在线调查表从216个PAL中收集的横截面数据。结果:超过70%的参与者至少报告了一些可检测的语音扰动,并且在面对面互动期间大约一半使用了辅助通信。在严重语音障碍的受访者中,有超过90%的人使用语音生成设备报告,而刚刚报告了使用低技术AAC的一半。大多数参与者都会与SLP讨论语音和交流,但在初始干预的时间和持续干预频率的时机上都有不同。不到一半的人报告说,他们的家庭成员或其他重要人物接受了与朋友交流有关的教育或支持。参与者还分享了他们对电话和视频通话,访问方法,安装系统,单词预测和存储短语以及消息和语音银行的使用和经验。结论:结果强调了早期推荐对于AAC干预,正在进行的重新审查和治疗,沟通伙伴的参与以及对多模式沟通的支持以及适应不断变化的需求的重要性。
对于医学图像分割,想象一下如果一个模型仅使用源域中的 MRI 图像进行训练,那么它在目标域中直接分割 CT 图像的性能如何?这种设置,即具有临床潜力的通用跨模态分割,比其他相关设置(例如域自适应)更具挑战性。为了实现这一目标,我们在本文中提出了一种新颖的双重规范化模型,该模型在通用分割过程中利用增强的源相似和源不相似图像。具体而言,给定一个源域,旨在模拟看不见的目标域中可能的外观变化,我们首先利用非线性变换来增强源相似和源不相似图像。然后,为了充分利用这两种类型的增强,我们提出的基于双重规范化的模型采用共享主干但独立的批量规范化层进行单独规范化。随后,我们提出了一种基于风格的选择方案,在测试阶段自动选择合适的路径。在三个公开数据集(即 BraTS、跨模态心脏和腹部多器官数据集)上进行的大量实验表明,我们的方法优于其他最先进的领域泛化方法。代码可在 https://github.com/zzzqzhou/Dual-Normalization 获得。
想象力,基于模型的推理和决策的神经基础对神经科学产生了很大的兴趣[5-7];在认知水平上,在动物和人类学习中已经假设并证明了模型学习和心理模拟[8-11]。其在基于人工模型的代理中的成功部署迄今已仅限于可用的确切过渡模型[12]或模型易于学习的域中的设置,例如符号环境或低维系统[13 - 16]。在代理无法使用模拟器的复杂域中,最近的成功由无模型方法主导[2,17]。在此类域中,采用标准计划方法的基于模型的代理的性能通常会遭受功能近似作用的模型错误[18,19]。这些错误在计划过程中复合了,导致过度优势和剂性能差。当前没有计划
摘要。胸肌分割是乳腺磁共振成像(MRI)的各种计算机辅助应用中的关键步骤。由于胸部和乳房区域之间的伪影和同质性,胸肌边界估计并不是一项琐碎的任务。在本文中,提出了一种基于深度学习的全自动分割方法,以准确描述轴向乳房MR图像中的胸肌边界。提出的方法涉及两个主要步骤:胸肌分割和边界估计。对于胸肌分割,基于U-NET结构的模型用于从输入图像中分离胸肌。接下来,通过候选点检测和轮廓分割来估计胸肌边界。使用两个Real-World数据集,我们自己的私人数据集和一个公开可用的数据集对所提出的方法进行了定量评估。第一个数据集包括12名患者乳房MR图像,第二个数据集由80名患者乳房MR图像组成。所提出的方法在第一个数据集中达到了95%的骰子得分,第二个数据集的骰子得分为89%。在大规模定量乳房MR图像上评估该方法的高分割性能表达了其在将来的乳腺癌临床应用中的潜在适用性。
图2。平面和Triplanar网络的想法。(a)将轴向平面网络从轴向图像进行训练的CA,CCSA和SCSA网络的分割结果组合在一起以产生结果。同样,我们可以创建冠状合奏和矢状 - 合奏。(b)Triplanar网络的概述,在该网络中,从轴向,冠状图像和矢状图像中训练的单个注意网络(例如,CA网络)产生的分段结果合并为生成结果。通过在三个正交平面训练的CCSA和SCSA注意网络中生成类似的分段结果。
摘要增强现实和虚拟现实体验给残疾人带来了重大障碍,使他们难以充分参与沉浸式平台。虽然研究人员已经开始探索解决这些无障碍问题的潜在解决方案,但我们目前缺乏对需要进一步研究的研究领域的全面了解,以支持包容性 AR/VR 系统的开发。为了解决当前的知识空白,我们与相关利益相关者(即学术研究人员、行业专家、有残疾生活经历的人、辅助技术人员以及残疾人组织、慈善机构和特殊需要教育机构的代表)领导了一系列多学科沙箱,共同探索研究挑战、机遇和解决方案。根据参与者分享的见解,我们提出了一个研究议程,确定了与特定形式的残疾(即涵盖身体、视觉、认知和听力障碍的范围内)相关的需要进一步研究的关键领域,包括与开发更易于访问的沉浸式平台相关的更广泛的考虑。
抽象的脑肿瘤分割是对医疗保健中诊断和治疗计划很重要的重要步骤。大脑MRI图像是根据建议的方法在收集数据并准备进一步分析之前先进行预处理的。建议的研究介绍了一种新策略,该策略使用以生物启发的粒子群优化(PSO)算法来分割脑肿瘤图像。为了提高准确性和可靠性,可以调整分割模型的参数。标准措施等标准度量,例如精度,精度,灵敏度,jaccard索引,骰子系数,特异性,用于绩效评估,以衡量建议的基于PSO的分割方法的有效性。建议方法的总体准确性为98.5%。随后的绩效分析分别为骰子得分系数,Jaccard指数,精度,灵敏度和特异性的91.95%,87.01%,92.36%,90%和99.7%的结果提供了更好的结果。因此,此方法对于放射科医生来说可能是有用的工具,可以支持它们诊断大脑中的肿瘤。关键字 - 脑肿瘤,群智能,粒子群优化,磁共振图像。
•和第三,如果不使用EPIC选项,我们将研究连接到EPIC系统的辅助系统和相关部门,例如PACS以及可能的放射学,实验室或药房系统。这些辅助系统是医院的合作伙伴组织,可能存在遗传的风险,或者是与Epic接触的内部医院申请。但是,今天可能无法将代理放置在设备上以启用保护,因此,仅使用Epic桥接的辅助系统与EPIC的接口,因此可以利用这些策略性接口限制访问权限。
摘要在为无行为能力的患者做出替代判断时,代理人经常努力猜测患者有能力会想要什么。代理人也可能因(唯一)做出这种决定的责任而感到痛苦。为了解决此类问题,已经提出了一种患者偏好预测因子(PPP),该预测因素将使用算法从人群级别的数据中推断出单个患者的治疗偏好,以了解具有相似人口统计学特征的人的已知偏好。然而,批评家们已经表明,即使这种PPP平均比人类替代者更准确,在识别患者偏好方面,拟议的算法仍然无法尊重患者(以前的)自主权,因为它会借鉴“错误的”数据:对于个人而言,这些数据不适合个人的数据,因此他们不适合他们的挑战,并且他们的实际原因是他们的实际原因,或者是实际的,或者是实际上的,或者是实际上的,或者是实际的,或者是实际的,或者是实际的,或者是实际上所依据的,或者是实际的原因。在船上受到这样的批评,我们在这里提出了一种新方法:个性化的患者偏好预测因子(P4)。P4基于机器学习的最新进展,该技术允许包括大型语言模型在内的技术更便宜,更有效地“微调”在特定于人的数据上。与PPP不同,P4将能够从实际上特定于其特定的材料(例如先前的治疗决策)中推断出单个患者的偏好。因此,我们认为,除了在个体水平上比以前提出的PPP更准确,P4的谓词还将更直接地反映每个患者自身的原因和价值观。在本文中,我们回顾了人工智能研究中的最新发现,这些发现表明P4在技术上是可行的,并认为,如果它是开发和适当部署的,则应缓解一些基于自主的主要关注原始PPP的批评者的关注。然后,我们考虑对我们的提案的各种异议,并提供一些暂定的答复。
摘要。在这篇 Outlook 论文中,我们解释了为什么当通过使用系统生理增强功能性近红外光谱 (SPA-fNIRS) 同时测量系统生理活动(例如心肺和自主神经活动)时,可以促进对功能性近红外光谱 (fNIRS) 神经成像信号的准确生理解释。SPA-fNIRS 的基本原理有两个方面:(i) SPA-fNIRS 能够更完整地解释和理解在头部测量的 fNIRS 信号,因为它们包含源自神经血管耦合和系统生理源的成分。用 SPA-fNIRS 测量的全身生理信号可用于回归 fNIRS 信号中的生理混杂成分。因此可以最大限度地减少误解。(ii) SPA-fNIRS 能够通过将大脑与整个身体的生理状态联系起来来研究具身大脑,从而对它们复杂的相互作用产生新的见解。我们预计 SPA-fNIRS 方法在未来将变得越来越重要。© 作者。由 SPIE 根据 Creative Commons Attribution 4.0 International 许可证出版。全部或部分分发或复制本作品需要完全注明原始出版物,包括其 DOI。[DOI:10.1117/1.NPh.9.3.030801]
