暴露于SOMAN后,使用阿托品和pralidoxime•吡啶斯汀溴溴用于暴露于Soman神经剂的预处理。吡啶斯汀溴溴仅防止暴露于Soman。吡ido骨溴的疗效取决于暴露后的阿托品和pralidoxime(2-PAM)的快速使用。(2.1,5.1)始终使用保护服装•防止暴露于化学神经剂的主要保护是佩戴保护服装。(2.1,5.1)使用吡啶斯汀溴溴作为预处理•暴露于Soman后,不得服用吡啶斯汀溴溴。如果在Soman曝光之前立即进行(例如,当给出气体攻击警报时)或与Soman中毒的同时进行,则预计不会有效,并且可能会加剧对Soman的亚致死性暴露的影响。(2.1,12.2)
© 2024 作者。开放存取。本文根据知识共享署名 4.0 国际许可协议获得许可,允许以任何媒介或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可的链接,并指明是否进行了更改。本文中的图像或其他第三方材料包含在文章的知识共享许可中,除非在材料的致谢中另有说明。如果材料未包含在文章的知识共享许可中,并且您的预期用途不被法定法规允许或超出允许用途,则您需要直接从版权所有者处获得许可。要查看此许可证的副本,请访问 http://creativecommons.org/licenses/by/4.0/。
Sailee Chavan 顾问:Chongmin Huan 羟氯喹对生发中心 B 细胞耐受性的影响 基本原理:系统性红斑狼疮是一种由抗核抗体介导的自身免疫性疾病。羟氯喹 (HCQ) 是一种抗疟药,已作为一线狼疮治疗药物使用了近 60 年。HCQ 通过抑制狼疮自身免疫但保留正常免疫功能来预防狼疮发作。然而,HCQ 的潜在机制仍然未知。根据我们的假设,HCQ 可能增强生发中心由 SMS2 介导的保护性 B 细胞耐受性。我们已报道 SMS2 是通过激活 PKCδ 自身反应性 GC B 细胞的促凋亡活性来预防小鼠狼疮发病所必需的。由于据报道 HCQ 可增加 SM 合成,我们假设 SMS2 调节的 GC B 细胞耐受性是由 HCQ 介导的。方法:体内分析包括用 16mg/kg/天 HCQ 治疗 NZBWF1 小鼠 4 周。分析了血清自身抗体水平(ELISA)、蛋白尿(Bradford 测定)、GC B 细胞比例(流式细胞术)等疾病指标。对于机制研究,使用 MACS 协议从野生型和 SMS2KO 小鼠中分离 B 细胞进行体外分析。使用流式细胞术分析 HCQ 对细胞凋亡和 SMS2 表达的影响。还在体外研究了活性氧 (ROS) 在 SMS2 表达中的作用以及 HCQ 对 ROS 介导的 SMS2 表达的影响。结果:4 周后,与对照组相比,16mg/kg/天 HCQ 显着降低了蛋白尿和 GC B 细胞比例。然而,未观察到血清自身抗体水平显着下降,表明需要优化治疗。从机制上讲,HCQ 增加了培养的 B 细胞中的细胞凋亡和 SMS2 表达。 ROS抑制降低了SMS2的表达,表明ROS在SMS2表达中发挥作用。意义:30-40%的狼疮患者因不耐受或毒性而停用HCQ,导致病情频繁发作。了解HCQ的机制有助于开发能够减轻疾病负担并缩小狼疮治疗差异的疗法。
摘要:Mxenes是一个新的二维材料家族,也称为过渡金属碳化物和氮化物,其通用公式为M n + 1 x n t x(n = 1 - 3)。它们固有的金属电导率和亲水性质具有迷人的物理化学特性(光学,电子,磁性,光到热转化。等)。超薄层的结构和光热特性吸引了许多在生物医学应用中的兴趣,尤其是作为癌症治疗的光质疗法剂。在这篇综述中,我们总结了光热疗法领域的MXENES的最新进展,并突出了至关重要的生物指数的制备和评估。首先,我们介绍了生物应用MXENES的制备和表面修饰的主要策略。然后,回顾了基于MXENE的光热应用领域的代表性病例,例如光热疗法,协同疗法和靶向治疗。最后,引入了细胞毒性和体内长期生物安全。我们还提出
摘要:有效的药物输送仍然是治疗神经退行性疾病的关键挑战,例如阿尔茨海默氏病(AD)。使用创新的纳米材料,将当前的药物(如乙酰胆碱酯酶抑制剂)通过鼻内途径传递到大脑,是管理AD的有希望的策略。在这里,我们开发了一种基于N,N,N-三甲基壳聚糖纳米颗粒(NPS)的独特组合药物输送系统。这些NP囊括了iVastigmine,这是最有效的乙酰胆碱酯酶抑制剂,以及胰岛素,一种互补的治疗剂。球形NP的ZETA电位为17.6 mV,大小为187.00 nm,多分散指数(PDI)为0.29。与药物溶液相比,我们的发现表明,使用NPS使用NPS可以显着提高通过绵羊鼻粘膜的药物运输效率。NP的私生菜疗法的运输效率为73.3%,胰岛素的运输效率为96.9%,超过了药物溶液的效率,该药物溶液的效率表现出52%的Rivastigine的运输效率,而胰岛素EX VIVO的运输效率为21%。这些结果突出了新药输送系统的潜力,是提高鼻运输效率的有前途的方法。这些组合性粘膜NPS为脑脊液和胰岛素同时递送提供了一种新的策略,这可能证明有助于开发AD和其他神经退行性疾病的有效治疗。
长点区域因其生态重要性和独特的地球物理属性而受到国际认可。将40公里的时间延伸到安大略省南部的伊利湖,是世界上最大的淡水沙吐。该地区被认为是联合国教科文组织世界生物圈储备,在拉姆萨尔公约下是国际重要的湿地。长点是全球重要的鸟类面积,用于受到威胁和众议院,水禽和迁徙地鸟类。这些生态价值受到各种各样的保护土地所有者的保护,包括两个国家野生动植物地区(NWA),一个省级公园和省级皇冠土地,以及在保护协议中受保护的数千公顷。最后,漫长的地区提供了许多娱乐和旅游机会,包括钓鱼,观鸟和远足。
《巴黎协定》通过6年多后,全球各国政府中短期减排目标的综合效应仍将导致2100年全球变暖2.4℃,全球气候承诺、目标和行动之间还存在较大差距(IPCC,2022)。多数研究支持加速缩小气候目标差距的关键举措之一是加快能源转型,特别是电力行业快速脱碳(Wei et al.,2021)。然而,极端天气事件频发,灾害强度不断加大,极端气温、强降雨、干旱、复杂灾害事件等已对全球能源系统造成显著冲击(Miara et al.,2017)。疫情、经济大幅反弹、乌克兰战乱相继扰乱能源市场,清晰地提醒我们,推动全球能源转型、提升能源韧性刻不容缓(Climate Action Tracker,2022;Wang et al.,2023)。能源系统的正常运行关系到地区乃至国家的安全与稳定,但能源系统是一个复杂的大系统,不可避免地面临着能源供应中断、价格上涨、设备故障、自然灾害等风险。相比内陆地区,岛屿凭借独特的地理位置,成为全球建设低碳、零碳社会的先行者。然而,岛屿往往在交通运输、运输管线建设方面存在劣势,获取外部能源的能力有限(Matsumoto and Matsumura,2022),其独特的地理位置也加剧了台风、地震、洪水等自然灾害对当地能源安全的威胁。基于
* 本研究得到韩国教育部、韩国国家研究基金会 (NRF-S1A5A2A01038705) 和首尔国立大学管理研究所的支持。** 首尔国立大学首尔国立大学商学院博士 (haejoohan@snu.ac.kr),第一作者。*** 首尔国立大学首尔国立大学商学院硕士生 (sujinp819@snu.ac.kr),第二作者。**** 首尔国立大学首尔国立大学商学院市场营销学教授 (kyoungmi@snu.ac.kr),通讯作者。
这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/eap.2565
