本文提出了一个基于代理的模型 (ABM),用于描述技术范式和新部门的内生性出现,其中包括不同的劳动力创造和破坏模式以及消费动态。该模型以劳动力增强型 K+S ABM 为基础,研究了从不同形式的技术变革中产生的长期劳动力需求模式。它提供了一个多层次、综合的视角来审视所谓的未来工作情景,而这些情景目前通常局限于公司层面或短期部门分析,并研究了劳动力创造和破坏趋于平衡的条件。这是一种相对公平和稳定的收入分配,由福特式的劳动力市场监管制度保证,保证了该模型永远不会达到完全技术失业的阶段。技术变革与总需求之间的协调模式也由不断增加的产品复杂性来确保,产品复杂性不断增加,从而不断吸收劳动力。
但是现在,尽管文字处理尚未完成分析,但可用性的前沿已经因为新应用程序和新界面技术的开发和引入而不断向前推进。电子邮件和计算机会议支持等通信应用程序所带来的可用性挑战远比文字处理向非程序员扩展所带来的挑战更加多样化。在当前技术中,多个用户通过极其不同的工作站类型协作访问多个应用程序。就在这些新领域的可用性问题得到阐述和探索的同时,前沿原型正在引入手势(例如手写)和语音输入以及交互式视频输出。这些新发展正在整个行业中以更快的速度、更广泛地发生,并随着时间的推移影响更多的用户。
1 Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel 24105, Germany, 2 Center for Genomic Regulation, Centro Nacional de An ´alisis Gen ´omico, Barcelona 08028, Spain, 3 Department of Gynaecology and Obstetrics, University Medical Center Schleswig-Holstein, Campus Kiel,基尔24105,德国,4勒中心,d'Erence,d'Ennovation,d'Expertance et transpert(crefix),PFMG 2025,´evry 91057,法国5,5中心国家de recherche en g'eng en g·eNomique humaine(Cnrgh)巴黎 - 萨克莱,“法国Evry 91057,6,6诊断与研究中心,分子生物医学中心,诊断与研究研究所,格拉兹医科大学,格拉兹医科大学,格拉斯8010,奥地利7号,奥地利7,大学医疗中心Schleswig-Holstein,Schleswig-Holstein,Kiel Kiel Kiel Kiel,Kiel Kiel 24105,surrying surrying,8 Noregian Pssrant forserpl of Norigian Pss toprant of Norigian Pressurant of Norigian Pressurant of Norigian Pressuration。奥斯陆大学医院Rikshospitalet,奥斯陆0372,挪威9号胃肠病学部分,奥斯陆大学医院Rikshospitalet,Oslo 0372,诺斯洛大学,俄勒冈州司法部,俄勒冈大学,司法部,施用疾病和移植,10372 0372, Norway, 11 Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hanover 30625, Germany, 12 Institute of Pathology, University Hospital Heidelberg, Heidelberg 69120, Germany, 13 Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, Ludwigsburg 71640, Germany and 14德国罗斯托克大学医学总外科系罗斯托克,罗斯托克
缩写:AC,交流电;AMD,高级计量装置;AI,人工智能;DC,直流电;DES,分布式能源系统;DG,分布式发电;DR,需求响应;DSM,需求侧管理;DSO,配电系统运营商;EMS,能源管理系统;ESS,储能系统;EV,电动汽车;HV,高压;ICT,信息和通信技术;IoT,物联网;LAN,局域网;LEM,本地能源市场;LV,低压;MG,微电网;P2P,点对点;PCA,主成分分析;PV,光伏;RE,可再生能源;REC,可再生能源社区;RED,(欧盟)可再生能源指令;RES,可再生能源系统;RTP,实时定价(−关税);SA,社会接受过程;SCADA,监控和数据采集; SG,智能电网;STS,社会技术系统;TE,交易能源;V2G,车辆到电网。电子邮箱地址:mpwolsink@uva.nl。
每天的执行摘要,国土安全部(DHS)人员在陆基入境港口,海上港口,机场,联邦设施和总统活动中进行高批量筛查任务。在这些地点,需要筛选商用货物,乘用车和违禁品的个人物品,例如麻醉品,武器,威胁材料和设备以及其他非法商品。对于边境控制,这代表着陆地边界的1200万个海事集装箱,海港的1200万个集装箱,通过铁路的270万个集装箱和1亿乘客每年。用于运输安全性,这代表每天超过550万张筛选。,对于联邦设施,这代表了9000个联邦设施的员工和访客的筛查。为此,即使对于一组最高风险的问题,DHS都在很大程度上依赖传统的感应技术,例如在多个能量带,计算机断层扫描(CT)运行的X射线门户和痕量化学感测来检测违禁品,而无需执行彻底的彻底大密集的手动检查。今天,各种形式的人工智能(AI)通常可以通过更好地利用传感器和检测器的数据流的方法来增强现有范式。以这种形式,在许多情况下,AI是一种后端设备,可帮助管理给定图像的全部内容。我们可以考虑使用更丰富的基础模型1的使用,而不是根据已测量的图像中的内容询问图像中的内容,而是要考虑使用更丰富的基础模型1,并问:“您应该测量什么”。但是,新兴技术的领域,再加上AI的进步,正在创造新的机会,从根本上重新考虑这些方法,在某些方面将它们转向外,并因此重新考虑了基于历史方法的风险模型。重新思考我们的方法可以为DHS如何以提高准确性,更高的吞吐量和通过这些检查站的流量来执行筛查任务的重要进展。我们今天可以检测到的图像的进步与AI启用的数据,成像,可视化和表征紧密相关,并且必须将其视为不可分割的连接。在今天的成像范式中,根本不使用大部分数据。AI通过从根本上重新定义数据的处理,分析和利用方式来实现新的思考旧问题。传统上,放射学领域的工作流都依赖于将大量的原始传感器数据压缩到重建的图像中,以进行人类解释,该过程不可避免地引入了数据丢失和不确定性,即使在当今使用的狭窄方式中。数据之后是处理和过滤的,以创建适合人类观看的蒸馏,而不是在其更丰富,更丰富的环境中使用。通过绕过或增强传统的工作流程过程,AI可以直接从原始传感器数据中提取细微的特征 - 在转换为视觉格式中可能会丢失或遮盖的功能。这些创新不仅挑战了根深蒂固的工作流程,而且还强调了AI如何将感知的局限性变成机会。本报告继续进行了一系列论文,我们探讨了AI,基础模型,对抗性AI,数字内容伪造以及对DHS任务的影响。它反映了与私营部门,学者和DHS运营组件的讨论,以及我们在2024年6月27日与马萨诸塞州理工学院林肯实验室(MIT LL)在“ AI-AI-Nopable Paradigms”范围内与马萨诸塞州理工学院实验室(MIT LL)进行了更深入的研究。2,3在本报告中,我们在抽象层面上回顾了非侵入性安全筛查的技术基础,引入了非侵入性筛选
基于人工智能的系统的开发面临着多重艰巨挑战。这些挑战主要一方面归因于相关工程学科(系统、安全、安保)的技术债务、其固有的复杂性、尚未解决的问题,另一方面归因于人工智能自主性的新兴风险、人工智能启发式与所需确定性之间的权衡,以及总体而言,定义、描述、评估和证明基于人工智能的系统足够安全和可信的难度。尽管过去几十年来,许多领域做出了大量研究贡献并取得了不可否认的进步,但实验性人工智能和可认证人工智能之间仍然存在差距。本文旨在“通过设计”弥合这一差距。考虑到工程范式是指定、关联和推断知识的基础,提出了一种新范式来实现 AI 认证。所提出的范式承认现有的 AI 方法,即联结主义、符号主义和混合主义,并提出利用它们作为知识捕获的基本特征。因此获得了一个概念元体,分别包含数据驱动、知识驱动和混合驱动的类别。由于观察到研究偏离了知识驱动,而是努力采用数据驱动方法,我们的范式呼吁依靠混合驱动方法来增强知识工程,以改善它们的耦合并从它们的互补性中获益。
1沃伦·阿尔珀特医学院,布朗大学,普罗维登斯,RI 02912,美国; CHRISTOPHER_CHANG@BROWN.EDU 2美国马萨诸塞州波士顿的Brigham和妇女医院神经外科部vchavarro@mgh.harvard.edu(V.S.C.); jgerstl@bwh.harvard.edu(J.V.E.G。); sarahblitz@hms.harvard.edu(S.E.B。); lspanehl@bwh.harvard.edu(L.S.); sgupta@bwh.harvard.edu(S.G.); dmazzetti@bwh.harvard.edu(D.M.); oarnaout@bwh.harvard.edu(O.A。); trsmith@bwh.harvard.edu(T.R.S.); jbernstock@bwh.harvard.edu(J.D.B.)3哈佛大学,哈佛大学,马萨诸塞州,马萨诸塞州02115,美国4神经外科系,罗斯托克大学,18055年,德国罗斯托克; daniel.dubinski@med.uni-rostock.de(D.D. ); florian.gessler@med.uni-rostock.de(F.A.G。) 5美国德克萨斯大学医学分公司神经外科系,美国德克萨斯州77555,美国; paavalde@utmb.edu 6美国普罗维登斯(Providence)的布朗大学生物学与医学系,美国RI 02912,美国; lily_n_tran@brown.edu 7,Unicamillus University医学与外科系,意大利罗马00131; luisaesposito99@icloud.com 8儿科分校,神经肿瘤科,医学博士安德森癌症中心,美国德克萨斯州休斯敦,美国德克萨斯州77030; gkfriedman@mdanderson.org 9 David H. Koch综合癌症研究所,马萨诸塞州剑桥,马萨诸塞州剑桥市,美国02139,美国 *通信:pperuzzi@bwh.harvard.edu†这些作者对这项工作做出了同样的贡献。3哈佛大学,哈佛大学,马萨诸塞州,马萨诸塞州02115,美国4神经外科系,罗斯托克大学,18055年,德国罗斯托克; daniel.dubinski@med.uni-rostock.de(D.D.); florian.gessler@med.uni-rostock.de(F.A.G。)5美国德克萨斯大学医学分公司神经外科系,美国德克萨斯州77555,美国; paavalde@utmb.edu 6美国普罗维登斯(Providence)的布朗大学生物学与医学系,美国RI 02912,美国; lily_n_tran@brown.edu 7,Unicamillus University医学与外科系,意大利罗马00131; luisaesposito99@icloud.com 8儿科分校,神经肿瘤科,医学博士安德森癌症中心,美国德克萨斯州休斯敦,美国德克萨斯州77030; gkfriedman@mdanderson.org 9 David H. Koch综合癌症研究所,马萨诸塞州剑桥,马萨诸塞州剑桥市,美国02139,美国 *通信:pperuzzi@bwh.harvard.edu†这些作者对这项工作做出了同样的贡献。5美国德克萨斯大学医学分公司神经外科系,美国德克萨斯州77555,美国; paavalde@utmb.edu 6美国普罗维登斯(Providence)的布朗大学生物学与医学系,美国RI 02912,美国; lily_n_tran@brown.edu 7,Unicamillus University医学与外科系,意大利罗马00131; luisaesposito99@icloud.com 8儿科分校,神经肿瘤科,医学博士安德森癌症中心,美国德克萨斯州休斯敦,美国德克萨斯州77030; gkfriedman@mdanderson.org 9 David H. Koch综合癌症研究所,马萨诸塞州剑桥,马萨诸塞州剑桥市,美国02139,美国 *通信:pperuzzi@bwh.harvard.edu†这些作者对这项工作做出了同样的贡献。
整合行业4.0在精益制造商店的地板中正在重塑工作档案,强调任务的增加以及工人对各种技能的需求。仅执行专业任务的操作员的常规看法正在转变为一项操作员,它们被视为能够管理一系列活动的灵活生产资源。随附的灵活性需要增强和丰富工人在“数字精益店面”上承担的技能和责任。这项研究深入研究了“工作丰富”和“工作扩大”的不断发展的定义,通过精益制造业和行业4.0专家通过全面的Delphi研究辨别。对这些概念的调查具有理论和实际意义,因为它们是(重新)工作概况设计中的关键技术。理解他们当前的含义至关重要,因为它们有可能提高工人的动机水平,增强工作满意度,从而提高工作绩效和生产力。这种探索对于在(近)未来追求社会可持续的工厂至关重要,与行业4.0的变革性目标保持一致,并强调精益制造实践在塑造明天的劳动力动态方面所扮演的积分作用。
这项研究解决了通过将高级机器学习范式与妇科专业知识相结合来增强体外受精(IVF)成功率预测的研究问题。该方法涉及对2017年至2018年和2010 - 2016年全面数据集的分析。使用了机器学习模型,包括逻辑回归,高斯NB,SVM,MLP,KNN和合奏模型,例如随机森林,Adaboost,Logit Boost,Rus Boost和RSM。关键发现揭示了IVF成功预测中患者人口统计学,不育因子和治疗方案的重要性。值得注意的是,集合学习方法表现出很高的精度,而Logit提升的精度为96.35%。这项研究的含义涵盖了临床决策支持,患者咨询和数据预处理技术,突出了个性化的IVF治疗和持续监测的潜力。该研究强调了妇科医生和数据科学家之间合作的重要性,以优化IVF结果。前瞻性研究和外部验证被认为是未来的方向,有望进一步彻底改变生育治疗,并向面临不育挑战的夫妇提供希望。
00591-0 DOI 10.1007/s11786-024-00591-0 ISSN 1661-8270 ESSN 1661-8289 Publisher: Springer This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the来源,提供指向Creative Commons许可证的链接,并指示是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。