1 GPIO58 MCU GPIO 2 RSTN 复位信号,低电平有效 3 GPIO11 MCU GPIO 4 GPIO08 MCU GPIO 5 GPIO05 MCU GPIO 6 GPIO04 MCU GPIO 7 GPIO09 MCU GPIO 8 GPIO47 MCU GPIO 9 GPIO45 MCU GPIO 10 GPIO44 MCU GPIO 11, 13, 30, 31 GND 接地 12 ANT 天线端口 14 VCC 输入电压 15 GPIO32 MCU GPIO 16 GPIO33 MCU GPIO 17 GPIO37 MCU GPIO 18 GPIO1 MCU GPIO 19 GPIO0 MCU GPIO 20 GPIO3 MCU GPIO 21 GPIO2 MCU GPIO 22 GPIO6 SWD 数据 23 GPIO7 SWD CLK 24 GPIO16 单片机 GPIO 25 GPIO17 单片机 GPIO (UART_TXD) 26 GPIO14 单片机 GPIO 27 GPIO15 单片机 GPIO 28 GPIO62 单片机 GPIO (UART_RXD) 29 GPIO60 单片机 GPIO
GND 计划倾向于从经济角度定义平等和正义。大多数旨在通过创造就业机会减少经济不平等。虽然一些女性将有机会在新的绿色经济中获得有偿工作,但由于男性在重点行业(即能源、建筑和运输)就业人数过多,但这些行业创造新的高质量工作将不成比例地使男性受益。几乎没有证据表明绿色就业将解决性别不平等问题,甚至可能进一步加剧性别不平等。[14] 工党宣言确实为女性、少数族裔和低收入人群提供培训奖学金,但没有一项提案充分解决女性经济平等的障碍。只有绿党宣言提出了全民基本收入 (UBI),这项政策可能会解决女性的物质劣势并赋予她们更大的经济独立性,尽管我们承认女权主义者对 UBI 的可取性存在分歧。[15]
摘要Via地面(GND)结构构成设计高性能印刷电路板(PCB)的最有用的元素之一。与VIA的电气连接成为实施各种电子函数的关键常规解决方案。但是,到目前为止,VIA从未用于设计负组延迟(NGD)电路。为了回答这个好奇的问题,本文介绍了有关使用Via Ground的低通NGD功能设计可行性的原始研究。在拓扑描述之后,建立了VIA参数功能的NGD分析。制定了允许合成NGD函数指定功能的通过功能的设计方程式。与商业工具之间的计算和模拟之间的比较验证了开发的NGD理论。正如预期的那样,在一百毫米截止频率上以百秒秒为单位的ngd值在理论模型和仿真之间具有良好的一致性获得。此外,时域分析了通过NGD结构的确认,可以在任意波形输入信号的时间吸收时生成输出信号,显示有限的带宽。
图 eA.1 显示了包含基本逻辑门的各种流行 74xx 系列芯片的引脚分布图。这些有时被称为小规模集成 (SSI) 芯片,因为它们由几个晶体管构成。14 针封装通常在顶部有一个凹口或在左上角有一个点来指示方向。引脚编号从左上角的 1 开始,沿封装逆时针方向排列。芯片需要分别在引脚 14 和 7 处接收电源 (V DD = 5 V) 和接地 (GND = 0 V)。芯片上的逻辑门数量由引脚数量决定。请注意,7421 芯片的引脚 3 和 11 未连接 (NC) 任何东西。7474 触发器具有常见的 D 、 CLK 和 Q 端子。它还具有互补输出 Q 。此外,它还接收异步设置(也称为预设或 PRE )和重置(也称为清除或 CLR )信号。这些都是低电平有效;换句话说,触发器在 PRE = 0 时设置,在 CLR = 0 时重置,在 PRE CLR = = 1 时正常运行。低电平有效
图 eA.1 显示了包含基本逻辑门的各种流行 74xx 系列芯片的引脚分布图。这些有时被称为小规模集成 (SSI) 芯片,因为它们由几个晶体管构成。14 针封装通常在顶部有一个凹口或在左上角有一个点来指示方向。引脚编号从左上角的 1 开始,沿封装逆时针方向排列。芯片需要分别在引脚 14 和 7 处接收电源 (V DD = 5 V) 和接地 (GND = 0 V)。芯片上的逻辑门数量由引脚数量决定。请注意,7421 芯片的引脚 3 和 11 未连接 (NC) 任何东西。7474 触发器具有常见的 D 、 CLK 和 Q 端子。它还具有互补输出 Q 。此外,它还接收异步设置(也称为预设或 PRE )和重置(也称为清除或 CLR )信号。这些都是低电平有效;换句话说,触发器在 PRE = 0 时设置,在 CLR = 0 时重置,在 PRE CLR = = 1 时正常运行。低电平有效
摘要电荷泵(CP)广泛用于现代相锁环(PLL)实现中。CP电流不匹配是PLL输出信号中静态相位和参考启动的主要来源。在本文中,提出了一个在较大输出电压范围内具有小电流不匹配特性的新型CP。专门设计的双重函数电路使用统一反馈操作放大器和电流镜子,以减少当前不匹配的输出电压,直到电源电压(V DD)或接地(GND)。和其他反馈晶体管用于减少频道长度调制效果的影响。延迟仿真结果表明,在40 nm CMOS技术中提出的CP的外电流为115 µA。此外,当前的不匹配小于0.97 µ a或0.84%的输出电压范围为0.04至1.07 V,覆盖1.1 V电源的93.6%以上。因此,所提出的CP最大化动态范围,并减少CP-PLL的相位集合和参考启动。关键字:电荷泵,当前的不匹配,动态范围,相锁定的环路分类:集成电路(内存,逻辑,模拟,RF,传感器)
此设计旨在为客户提供具有成本优化物料清单的即用型小型毫米波车内雷达传感器。在此设计中,由 PMIC 导轨(3.3V、1.8V 和 1.2V)供电的 AWRL6432 设备无需多个 DC-DC 转换器,并使设计具有极小的外形尺寸。为此板设计的天线能够提供 120°(方位角)× 120°(仰角)视场、3.5GHz 带宽和 6 至 7dBi 峰值增益,并采用高性能 Rogers ® RO3003 ® 材料。此参考设计还采用了 TI 的低成本、小型、低功耗 Derby PMIC 和 CAN PHY。板载连接器(J1、J2 和 J3)引出各种通信外设(UART、RS232、SPI、CAN、LIN、JTAG、I2C、GPIO)、SOP、PWR 和 GND,包括一个专用的 10 针连接器 (J1),用于直接连接 LP-XDS110,从而简化了电路板的操作。设计中使用的板载连接器间距为 1.27 毫米,这也有助于减小电路板的整体尺寸。
ADS-B 自动相关监视 – 广播式 AH 抽象层次结构 AOIS 航空运行信息系统 AR 增强现实 A-SMGCS 先进地面运动引导和控制系统 ATC 空中交通管制 ATCO 空中交通管制操作员 ATCR 空中交通管制雷达 ATM 空中交通管理 COO 协调员 CTOT 计算的起飞时间 CWP 管制员工作位置 DEL 交付 DTD 接地距离 EID 生态界面设计 EOBT 预计起飞时间 ER 探索性研究 ETOT 预计起飞时间 FDP 飞行数据处理 FOV 视场 GGV 注视、手势、语音 GND 地面 HDE 低头设备 HMD 头戴式显示器 ICAO 国际民用航空组织 IFR 仪表飞行规则 IHP 中间等待点 ILS 仪表着陆系统 IMC 仪表气象条件 JU 联合承诺 LOC 航向道 LVP 低能见度程序 OOT 离开塔台 PP 伪飞行员 PSR 主监视雷达雷达无线电探测和测距
电源电压范围,V CC (参见注 1)−0.6 V 至 7 V。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。电源电压范围,V PP (参见注 1)-0.6 V 至 14 V。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。输入电压范围(见注 1),除 A9 外的所有输入 -0.6 V 至 V CC + 1 V。。。。。。。。。。。。。。。。。。。。。。。。。。。。A9 -0.6V 至 13V。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。输出电压范围,相对于 V SS (见注 1) -0.6 V 至 V CC + 1 V 。。。。。。。。。。。。。。。。。。。。。。。。。。。自然通风工作温度范围('27C040-_ _JL 和 '27PC040-_ _FML)0 °C 至 70 °C。。。。。。。。。。。。。。自然通风工作温度范围(’27C040-_ _JE 和’27PC040 _ _ FME)− 40 °C 至 85 °C。。..........存储温度范围,T stg −65 ° C 至 125 ° C ............。。。。。。。。。。。。。。。。。。。。。。。。............‡ 超出“绝对最大额定值”所列的应力可能会对设备造成永久性损坏。这些只是应力额定值,并不暗示设备在这些或“建议工作条件”所列以外的任何其他条件下能够正常运行。长时间暴露于绝对最大额定条件可能会影响设备的可靠性。注 1:所有电压值均相对于 GND。
LM50/LM50-Q1 可以很好地处理电容负载。无需任何特殊预防措施,LM50/LM50-Q1 即可驱动任何电容负载。LM50/LM50-Q1 具有标称 2 k Ω 输出阻抗(如图 17 所示)。输出电阻的温度系数约为 1300 ppm/°C。考虑到此温度系数和电阻的初始公差,LM50/LM50-Q1 的输出阻抗不会超过 4 k Ω。在极其嘈杂的环境中,可能需要添加一些过滤以最大限度地减少噪声拾取。建议从 V IN 到 GND 添加 0.1 μ F 以旁路电源电压,如图 16 所示。在嘈杂的环境中,可能需要在输出到地之间添加一个电容器。具有 4 k Ω 输出阻抗的 1 μ F 输出电容器将形成 40 Hz 低通滤波器。由于 LM50/LM50-Q1 的热时间常数比 RC 形成的 25 ms 时间常数慢得多,因此 LM50/LM50-Q1 的整体响应时间不会受到显著影响。对于更大的电容器,这种额外的时间滞后将增加 LM50/LM50-Q1 的整体响应时间。