人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
要符合条件,学生需要在Mizzou申请新生入学,并被拒绝。学生必须具有至少17个ACT复合材料(920 SAT等效)或最低高中坡度的平均水平为2.50。学生对在Mizzou校园,生活费用(如果可用的空间)进行1-6小时的学费/费用负责财务责任。可以在两个校园中访问资源。头两年后,全职转移到Mizzou以完成学位。
● Ascension Borgess 医院('23) ● Ascension Genesys 医院('23) ● Ascension St. John 医院('23) ● Ascension St. Mary's 医院('23) ● Ascension Providence 医院 — Novi('23) ● Ascension Providence 医院 — Southfield('23)
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
场景文本图像不仅包含样式信息(字体,背景),还包含内容信息(字符,纹理)。不同的场景文本任务需要不同的信息,但是以前的表示学习方法 - 在所有任务中使用紧密耦合的功能,从而导致次优性能。我们提出了一个旨在解开这两种功能的分解表示学习框架(亲爱的),以改善适应性,以更好地解决各种下游任务(选择您真正需要的内容)。具体来说,我们合成具有相同样式但内容不同的图像对数据集。基于数据集,我们通过监督设计将两种类型的功能分解。很明显,我们将视觉表示形式直接分为样式和内容功能,内容特征是通过文本识别损失来监督的,而对齐损失使图像对中的样式特征保持一致。然后,样式功能用于通过图像解码器重新构造对应图像的提示,以指示对应方的内容。这样的操作根据其独特属性有效地将功能分解。据我们所知,这是场景文本领域中第一次删除文本图像的固有属性。 我们的方法在场景文本识别,转换和编辑中实现了最新的性能。据我们所知,这是场景文本领域中第一次删除文本图像的固有属性。我们的方法在场景文本识别,转换和编辑中实现了最新的性能。
一些认知能力被认为是复杂社会生活的结果,这种社会生活使个体能够通过先进的策略实现更高的适应性。然而,大多数证据都是相关的。在这里,我们进行了一项实验研究,研究群体大小和组成如何影响孔雀鱼 (Poecilia reticulata) 的大脑和认知发育。在 6 个月的时间里,我们按照 3 种社会处理方法中的一种饲养性成熟的雌性:一个小的同类群,由 3 只孔雀鱼组成;一个大的异类群,由 3 只孔雀鱼和 3 只溅斑灯鱼 (Copella arnoldi) 组成——一种在野外与孔雀鱼共存的物种;以及一个大的同类群,由 6 只孔雀鱼组成。然后,我们测试了孔雀鱼在自我控制 (抑制控制)、操作性条件反射 (联想学习) 和认知灵活性 (逆向学习) 任务中的表现。使用 X 射线成像,我们测量了它们的大脑大小和主要大脑区域。 6 只个体组成的较大群体(包括同种群体和异种群体)表现出比较小群体更好的认知灵活性,但在自我控制和操作性条件反射测试中没有差异。有趣的是,虽然社交操纵对大脑形态没有显著影响,但相对较大的端脑与更好的认知灵活性相关。这表明,除了大脑区域大小之外,其他机制使来自较大群体的个体具有更大的认知灵活性。虽然没有明确的证据表明对大脑形态的影响,但我们的研究表明,生活在较大的社会群体中可以提高认知灵活性。这表明社会环境在古比鱼的认知发展中发挥着作用。
开放式对象检测(OSOD)已成为当代研究方向,以解决对未知对象的检测。最近,很少有作品通过使用Con-Contrastive聚类来分开未知类,在OSOD任务中实现了可观的性能。相比之下,我们提出了一种新的基于语义聚类的方法,以促进语义空间中有意义的群集的对齐,并引入一个类去相关模块以实现群间间的分离。我们的方法进一步不适合对象焦点模块预测对象分数,从而增强了未知对象的检测。此外,我们采用了i)一种评估技术,该技术对低置信度输出进行了惩罚,以减轻对未知对象的错误分类的风险,ii)一种称为HMP的新指标,该指标使用hMP使用Har-nonic Mean结合了已知和未知的精度。我们的广泛实验表明,所提出的模型可以在OSOD任务上对MS-Coco&Pascal VOC数据集有显着改进。
截至 2023 年初,生成式人工智能已成为流行文化和科技行业的热门话题。多个网站允许用户写一个句子并返回一张描绘用户所写内容的图像。有些网站免费提供这项服务,而有些网站则要求用户为这项服务付费。2023 年 1 月 23 日,微软宣布向发明 ChatGPT 和 DALL-E[12][13] 的人工智能研究实验室 OpenAI 投资数十亿美元,这意味着人工智能领域的重要性和潜力。人工智能已经在医疗保健、制造业、零售业和银行业等许多行业得到应用。相对较新的文本到图像生成式人工智能领域(见第 2.1 节)进一步扩展了人工智能的使用领域。我们在本文中研究的一个潜在应用领域是用户体验设计(从现在开始称为 UX)。例如,正在从事 Web 应用程序项目的 UX 设计师或学生可能会发现创建可作为初稿并进一步改进的模拟用户界面很有用。
研究表明,第一人称射击游戏 (FPS) 有助于提高人的认知能力 (2)。在一项特定研究中,研究人员调查了玩电子游戏如何影响手眼协调能力以及多任务处理能力。实验对 50 人进行了研究,这些人被分成两组:25 名经常玩游戏的人和 25 名不玩游戏的人。第 1 组(游戏玩家组)在每次测试之前和测试之间玩游戏,而第 2 组(所有不玩游戏的人)只是在测试之间短暂休息。该测试模拟了计算机上的工作以测量多任务处理能力。研究人员的假设得到了证据的支持,测试分数存在显著差异,这表明电子游戏与人的认知技能和能力有直接关系 (2)。虽然两组的分数都随着时间的推移而增加,但游戏组的整体表现要好得多。这项研究的一个挑战是确定电子游戏是否真的有助于提高这些技能,或者多任务处理能力较强的人是否也对游戏感兴趣。