时空卷积通常无法学习视频中的运动动态,因此需要一种有效的运动表示来理解自然界中的视频。在本文中,我们提出了一种基于时空自相似性(STSS)的丰富而鲁棒的运动表示。给定一系列帧,STSS 将每个局部区域表示为与空间和时间中邻居的相似性。通过将外观特征转换为关系值,它使学习者能够更好地识别空间和时间中的结构模式。我们利用整个 STSS,让我们的模型学习从中提取有效的运动表示。我们所提出的神经块称为 SELFY,可以轻松插入神经架构中并进行端到端训练,无需额外监督。通过在空间和时间上具有足够的邻域体积,它可以有效捕捉视频中的长期交互和快速运动,从而实现鲁棒的动作识别。我们的实验分析表明,该方法优于以前的运动建模方法,并且与直接卷积的时空特征互补。在标准动作识别基准 Something-Something-V1 & V2、Diving-48 和 FineGym 上,该方法取得了最佳效果。
材料和方法:我们研究了 EGFR、AREG 和 EREG 在 MIBC 中的预后意义。通过 qRT-PCR 对曼海姆大学医院(MA;中位年龄 72 岁,四分位距 [IQR] 64 – 78 岁,25% 为女性)接受根治性膀胱切除术的 100 名 MIBC 患者的组织样本进行基因表达和拷贝数分析。在忠北和 MDACC 队列中,对 2017 年 TCGA MIBC 队列(中位年龄 69 岁,IQR 60 – 77 岁,27% 为女性)中的 361 名患者进行了结果验证。使用 Mann-Whitney 检验、Kruskal-Wallis 检验和 Spearman 相关性将基因表达与临床病理参数相关联。使用 Kaplan-Meier 和 Cox 比例风险模型分析总体生存率 (OS)、癌症特异性生存率 (CSS) 和无病生存率 (DFS) 基因表达。
摘要 - 手动跟踪教室出勤,这是一种备受推崇的传统方法,由于其对错误和效率低下的敏感性而提出了重大挑战。这些限制不仅消耗了宝贵的教师时间,而且损害了学术记录的准确性,从而影响了学生参与和表现的评估。回答这个问题,我们提出了一种使用基于机器学习的识别系统自动化课堂出勤的方法。这项研究旨在提高教育环境中出勤跟踪的准确性,效率和可靠性。我们研究的核心在于系统的设计和实施,阐明体系结构,数据流和集成到课堂环境中。我们的分析结果表明该系统可以跟踪出勤率的能力,同时提供有关其性能指标的准确信息。我们还深入研究了在课堂上实施此类技术的道德和实际考虑。通过使用基于机器学习的识别来自动化该过程,教育机构可以提高其运行效率,降低错误,并最终提供更有生产力的学习环境。我们的研究为教育研究和技术进步的未来途径打开了大门。关键字 - 自动出勤,出勤跟踪,面部识别,机器学习,课堂技术
面部表达识别(FER)在计算机视觉应用中起着关键作用,包括视频不存在和人类计算机的相互作用。尽管FER的进展没有局部进步,但在处理在现实世界情景和数据集中遇到的低分辨率面部图像时,性能仍然会摇摆不定。一致性约束技术引起了人们的关注,以产生强大的卷积神经网络模型,从而通过增强来适应变化,但它们的功效在低分辨率FER的领域中得到了影响。这种性能下降可以归因于网络难以提取表达特征的增强样本。在本文中,我们确定了在考虑各种程度的分辨率时引起过度拟合问题的硬样品,并提出了新颖的硬样品感知一致性(HSAC)损失函数,其中包括组合注意力同意和标签分布学习。通过结合高分辨率和翻转低分辨率图像的激活图,将注意力图与适当的目标注意图与适当的目标注意图与适当的目标注意力图相结合的注意图与适当的目标注意力图的注意力图对齐。我们通过结合原始目标和高分辨率输入的预测来测量低分辨率面部图像的分类难度,并适应标签分布学习。我们的HSAC通过有效管理硬样品来赋予网络能够实现概括。各种FER数据集上的广泛实验证明了我们提出的方法比现有方法的多尺度低分辨率图像的优越性。此外,我们在原始RAF-DB数据集中达到了90.97%的最新性能。
描述 认知科学的目标(也是本课程的目标)是了解思维的工作原理。试图了解我们自己的思维可能是整个科学领域中最雄心勃勃、最令人兴奋(也是最困难)的项目,这个项目需要从实验心理学、计算机科学和人工智能、语言学、视觉科学、哲学、人类学、行为经济学和几种神经科学(等等)等领域汲取的工具。本课程将向您介绍这些领域与思维研究相关的主要工具和理论。我们将在探索心理过程的本质(如感知、推理、记忆、注意力、想象、语言、智力、决策和意识)时运用这些观点。总之,本课程将向您介绍认知科学、它所依据的假设以及迄今为止获得的许多最重要和最令人着迷的结果。
a 瑞士苏黎世大学心理学系可塑性研究方法 b 瑞士苏黎世大学和苏黎世联邦理工学院苏黎世神经科学中心 (ZNZ) c 瑞士苏黎世大学大学研究优先计划“健康老龄化动力学” d 法国帕莱索巴黎萨克雷大学、Inria、CEA e 德国莱比锡马克斯普朗克人类认知和脑科学研究所神经病学系 f 加拿大魁北克省蒙特利尔蒙特利尔大学老年医学研究所功能神经影像科 g 美国德克萨斯州奥斯汀德克萨斯大学戴尔医学院计算神经影像实验室 h 美国密歇根州底特律韦恩州立大学老年学研究所和心理学系 i 加拿大蒙特利尔康考迪亚大学心理学系 j 大脑与运动研究所认知神经解剖学实验室épinière,法国巴黎 k 德克萨斯大学心理学系,美国德克萨斯州奥斯汀
研究认知功能与潜在大脑活动之间的关系一直是、现在仍然是最大的神经科学挑战之一。功能性磁共振成像 (fMRI) 是一种领先的成像方法,用于量化和绘制与大脑活动相关的代谢变化的地理分布,包括静息时 (Riedl et al., 2016) 或主动处理信息时 (Chen and Glover, 2015)。脑电图 (EEG) 是一种成熟的电生理技术,可安全、非侵入性地 (Cohen, 2017) 记录静息或执行任务时 (Zani and Proverbio, 2003) 突触后浅层大脑活动的时间准确记录 (Burle et al., 2015)。结合脑磁图 (MEG),EEG 对理解不同频率的大脑振荡与特定心理状态和过程的关系做出了广泛贡献 (Benedek et al., 2014)。此外,它还允许测量振幅、相位和同步性的局部变化,并探索与特定认知功能(Perfetti 等人,2011 年;Groppe 等人,2013 年;Roux 和 Uhlhaas,2014 年)相关的空间和时间分布,例如注意力和记忆力。本文将回顾支持认知控制和抑制的焦点和大规模协调模式的当前知识。
摘要 研究:AI 社会认知评估与建模。评估 LLM 中的心智理论及其在心理学中的应用 NLP:LLM IFT、表征学习(对比和三重态损失)、语义聚类、总结 DL:Transformers、MoE、EncDec、RNNs、DPO、LoRA 工具:Python、Pytorch、Deepspeed、AWS Sagemaker、hydra、SQL 管理:建立 ML 团队、职能、策略和 OKR、招聘和指导科学家和实习生以及建立数据和注释合作伙伴关系。
意识的“难题”长期以来一直是哲学界争论的焦点,神秘主义认为,由于认知或认识论的局限性,意识可能本质上无法解决。本文从人工神经网络的复杂性出发,提出了一种支持神秘主义的新论点。以一个经过训练可以对图像进行分类的简单多层神经网络为例,结果表明,即使理解单个人工神经元在信息处理中的作用也超出了我们的认知能力。考虑到生物神经元的复杂性,其复杂性远远超过人工神经元,挑战就变得更加突出。这引发了人们对理解意识这一复杂得多的现象的可行性的质疑,因为我们的认知局限性延伸到了解释复杂系统的基本原理。本文强调了分层抽象所带来的挑战,并将其与微处理器等其他多级系统进行比较,以论证某些问题可能是无法克服的。