近年来,深度学习和基于人工智能的分子信息学发展迅猛。AlphaFold 的成功引发了人们对将深度学习应用于多个子领域的兴趣,包括合成化学的数字化转型、从科学文献中提取化学信息以及基于天然产物的药物发现中的人工智能。人工智能在分子信息学中的应用仍然受到这样一个事实的限制:用于训练和测试深度学习模型的大多数数据都不是 FAIR 和开放数据。随着开放科学实践越来越受欢迎,FAIR 数据运动、开放数据和开源软件等举措应运而生。对于分子信息学领域的研究人员来说,拥抱开放科学并提交支持其研究的数据和软件变得越来越重要。随着开源深度学习框架和云计算平台的出现,学术研究人员现在能够轻松部署和测试自己的深度学习算法。随着深度学习的新硬件和更快硬件的发展,以及数字研究数据管理基础设施的不断增加,以及促进开放数据、开源和开放科学的文化,人工智能驱动的分子信息学将继续发展。本综述探讨了分子信息学中开放数据和开放算法的现状,以及未来可以改进的方法。
我们已审查了您根据第 510(k) 条提交的上述器械上市前意向通知,并确定该器械与 1976 年 5 月 28 日(即《医疗器械修正案》颁布日期)之前在州际贸易中合法销售的同类器械或已根据《联邦食品、药品和化妆品法案》(法案)的规定重新分类且无需获得上市前批准申请 (PMA) 批准的器械基本相同(就附件中所述的使用指征而言)。因此,您可以根据法案的一般控制规定销售该器械。虽然这封信将您的产品称为器械,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备清单、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不评估与合同责任担保相关的信息。但是,我们提醒您,设备标签必须真实,不得误导。
人工智能:欧洲和罗马尼亚初创企业格局概述及其决定其成功的因素 Adina SĂNIUȚĂ 国立政治研究和公共管理大学 6-8 Povernei St., Sector 1, 012104 布加勒斯特,罗马尼亚 adina.saniuta@facultateademanagement.ro Sorana-Oana FILIP 罗马尼亚 sorana.filip@gmail.com 摘要 人工智能 (AI) 已融入我们生活的许多方面;在技术驱动的时代,企业使用人工智能来提高生产力,更好地了解消费者行为或通过机器人提供服务。基于 Filip (2021) 为论文进行的在线桌面和试点研究,该研究概述了欧洲和罗马尼亚初创企业的格局以及决定其成功的因素,如产品开发核心团队专业知识、核心团队承诺和业务战略。该研究旨在为进一步的论文创建一个框架,该论文将深入研究罗马尼亚的人工智能初创环境,因为经济期刊预测,鉴于罗马尼亚在这一领域的潜力以及 IT、技术和机器人领域的人才库,该市场将在不久的将来增长。关键词人工智能;初创企业;成功因素。介绍人工智能的一般性讨论人工智能 (AI) 有多种形式,从人脸检测和识别系统、搜索和推荐算法到数字助理、聊天机器人或社交媒体。它的复杂性和动态性很难用一个定义来概括 (Zbuchea、Vidu 和 Pinzaru,2019)。据统计,到 2024 年,全球人工智能市场规模预计将达到 5000 亿美元(Statista,2021a),预计人工智能软件市场收入将达到 3275 亿美元(Statista,2021b)。尽管人工智能在过去几年似乎发展迅速,普及度不断提高,但人工智能的历史可以追溯到 20 世纪 50 年代,当时这一概念诞生于科学家、数学家和哲学家的头脑中。艾伦·图灵是第一个对这一主题进行广泛研究的人,他在他的论文“计算机器和智能”中描述了人工智能一词,以及它的构建和测试(Anyoha,2017,第 1 页)。随着图灵测试的引入,他
我们已审查了您根据第 510(k) 条提交的上述器械上市前意向通知,并确定该器械与 1976 年 5 月 28 日(即《医疗器械修正案》颁布日期)之前在州际贸易中合法销售的同类器械或已根据《联邦食品、药品和化妆品法案》(法案)的规定重新分类且无需获得上市前批准申请 (PMA) 批准的器械基本相同(就附件中所述的使用指征而言)。因此,您可以根据法案的一般控制规定销售该器械。虽然这封信将您的产品称为器械,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备清单、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不评估与合同责任担保相关的信息。但是,我们提醒您,设备标签必须真实,不得误导。
我们已审查了您根据第 510(k) 条提交的上述器械上市意向通知,并确定该器械与 1976 年 5 月 28 日(即《医疗器械修正案》颁布日期)之前在州际贸易中合法销售的同类器械或已根据《联邦食品、药品和化妆品法案》(法案)的规定重新分类且无需获得上市前批准申请 (PMA) 批准的器械基本相同(就附件中所述的使用指征而言)。因此,您可以根据该法案的一般控制规定销售该器械。虽然本函将您的产品称为器械,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备清单、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不会评估与合同责任担保相关的信息。但我们提醒您,设备标签必须真实,不得误导。
摘要:在本文中,我区分了人工智能 (AI) 背景下可能出现的三种危害:个人危害、集体危害和社会危害。社会危害经常被忽视,但不能归结为前两种危害。此外,应对人工智能引起的个人和集体危害的机制并不总是适合应对社会危害。因此,政策制定者对当前人工智能法律框架的差距分析不仅存在不完整的风险,而且为弥补这些差距而提出的新立法提案也可能无法充分保护受到人工智能不利影响的社会利益。通过概念化人工智能的社会危害,我认为需要从个人角度转变视角,转向人工智能的监管方法,以解决其对整个社会的影响。借鉴专门保护社会利益的法律领域——环境法,我确定了欧盟政策制定者在人工智能背景下应考虑的三种“社会”机制。这些机制涉及 (1) 公共监督机制,以提高问责制,包括强制性影响评估,并提供提供社会反馈的机会; (2) 公共监测机制,以确保独立收集和传播有关人工智能社会影响的信息; (3) 引入具有社会维度的程序性权利,包括获取信息、获得司法公正和参与人工智能公共决策的权利,无论个人受到何种伤害。最后,在提出总结性意见之前,我会考虑欧盟委员会关于人工智能监管的新提案在多大程度上考虑到了这些机制。
外部专家组 Najeeb Al Shorbaji,约旦电子健康发展协会 Arisa Ema,日本东京大学未来倡议研究所 Amel Ghoulia,H3Africa、H3ABioNet,突尼斯 Jennifer Gibson,加拿大多伦多大学达拉拉纳公共卫生学院生物伦理联合中心 Kenneth W. Goodman,美国迈阿密大学米勒医学院生物伦理与卫生政策研究所 Jeroen van den Hoven,荷兰代尔夫特理工大学 Malavika Jayaram,新加坡数字亚洲中心 Daudi Jjingo,乌干达马凯雷雷大学 Tze Yun Leong,新加坡国立大学 Alex John London,美国卡内基梅隆大学 Partha Majumder,印度国家生物医学基因组学研究所 Tshilidzi Marwala,南非约翰内斯堡大学 Roli Mathur,印度医学研究理事会 Timo Minssen,高级生物医学创新法研究 (CeBIL),哥本哈根大学法学院,丹麦 Andrew Morris,英国健康数据研究中心,英国 Daniela Paolotti,ISI 基金会,意大利 Maria Paz Canales,数字权利组织,智利 Jerome Singh,夸祖鲁-纳塔尔大学,南非 Effy Vayena,苏黎世联邦理工学院,瑞士 Robyn Whittaker,奥克兰大学,新西兰 曾毅,中国科学院,中国
贸易/设备名称:GI Genius 法规编号:21 CFR 876.1520 法规名称:胃肠道病变软件检测系统 监管类别:II 类 产品代码:QNP 日期:2021 年 6 月 18 日 收到日期:2021 年 6 月 23 日 亲爱的 Roger Gray: 我们已审查了您根据第 510(k) 条提交的上市前通知,该通知表明您有意销售上述设备,并已确定该设备与在 1976 年 5 月 28 日(医疗器械修正案颁布日期)之前在州际贸易中合法销售的同类设备基本等同(就附件中注明的用途而言),或与根据《联邦食品、药品和化妆品法案》(法案)的规定重新分类的设备基本等同,这些设备不需要获得上市前批准申请(PMA)的批准。因此,您可以销售该设备,但须遵守该法案的一般控制规定。虽然本函将您的产品称为设备,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备列表、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不会评估与合同责任担保相关的信息。但我们提醒您,设备标签必须真实且不得误导。如果您的设备被归类(见上文)为 II 类(特殊控制)或 III 类(PMA),则可能会受到其他控制。影响您设备的现有主要法规可在《联邦法规》第 21 篇第 800 至 898 部分中找到。此外,FDA 可能会在《联邦公报》上发布有关您设备的进一步公告。
在科幻电视剧《星际迷航:原初系列》的“末日决战”一集中,企业号的船员们访问了一对行星,这两颗行星已经进行了 500 多年的计算机模拟战争。为了防止他们的社会被毁灭,这两个星球签署了一项条约,战争将以计算机生成的虚拟结果进行,但伤亡人数将是真实的,名单上的受害者自愿报告被杀。柯克船长摧毁了战争模拟计算机,并受到谴责,因为如果没有计算机来打仗,真正的战争将不可避免。然而,战争持续这么久的原因正是因为模拟使两个社会免受战争的恐怖,因此,他们几乎没有理由结束战争。虽然基于科幻小说,但未来人工智能战场的威胁引发了人们对战争恐怖的道德和实际担忧。驱使各国采用致命自主武器系统 (LAWS) 的逻辑确实很诱人。人类是会犯错的、情绪化的、非理性的;我们可以通过 LAWS 保护我们的士兵和平民。因此,这种推理将 LAWS 构建为本质上理性的、可预测的,甚至是合乎道德的。杀手机器人,尽管名为杀手机器人,实际上会拯救生命。然而,这种逻辑是愚蠢的。如果人工智能战争专注于完善战争手段,而忽视战争的目的,那么它就会存在许多潜在的陷阱。就像在《星际迷航》中一样,无风险战争的诱惑力很强,但它会给那些最终不可避免地被杀死、致残和流离失所的人带来真正的后果。接下来,我认为 LAWS 的前景存在严重的道德问题,而这些问题是先进技术无法解决的。道德不能预先编程以适用于各种情况或冲突,而有意义的人为控制忽视了自动化偏见如何影响决策中的人机交互。军事实体和非政府组织都提出了有意义的人类控制的概念,特别是在致命决策中
序列的模式(4)。但是,共识序列并不代表序列中的所有信息,因为在许多情况下,其他碱基也出现了很大的频率。例如,主要是Aug的procaryotic启动密码子也有时也有Gug和Uug。如果人们忽略了这些可能性,则已经扭曲了数据。这是共识序列是结合位点的差模型的几个原因之一(5,6)。在绑定站点中特定位置的重要性更清楚地始终如一地描述了那里的模式所需的信息(7,8)。从同样可能的可能性中选择一个符号或状态需要一个“位”信息。例如,要向某人传达硬币弹的结果需要1个信息,因为只有一个是不是一个问题:“是头吗?”。如果绑定站点中的位置始终包含一个基数(例如g),然后我们需要两个信息,因为需要回答两个是的问题:“是A还是G?”(即是嘌呤吗?)和'是A还是C?”。(如果两个问题的答案都是“否”的,则必须是T。)此外,如果职位包含两个基础(例如有时A,有时是G),只有一个问题就足够了,因为四分之二的选择等同于两个选择中的一个。因此,仅需要一个位来描述仅包含嘌呤的结合位点的位置,但是需要两个位来描述始终包含腺嘌呤的位置。在1948年,克劳德·香农(Claude Shannon)展示了如何做到这一点(7,8)。如果碱的频率不是完全概括的,则需要更复杂的计算以在某个位置找到平均信息。在香农之后,我们将不确定性度量定义为: