SAM.gov › opp › 查看 2023 年 1 月 11 日 — 2023 年 1 月 11 日 联邦政府网站通常以 .gov 或 .mil 结尾。... a) 您的公司是否有支持建模和仿真、人工智能的经验...
摘要:数字景观中的身份验证是由于不断发展的网络威胁而面临的持续挑战。传统的基于文本的密码,这些密码容易受到各种攻击,因此需要创新解决方案来加强用户系统。本文介绍了Rosecliff算法,该算法是一种双重身份验证机制,旨在提高针对复杂的黑客尝试的弹性并不断发展存储的密码。该研究探讨了加密技术,包括对称,不对称和混合加密,从而解决了量子计算机构成的新兴威胁。Rosecliff算法将动态介绍给密码中,该密码允许在多个平台上进行更安全的通信。评估算法的强大攻击,例如蛮力,字典攻击,中间攻击和基于机器学习的攻击。Rosecliff算法通过其动态密码的一代和加密方法,证明了针对这些威胁有效的。可用性评估包括实施和管理阶段,专注于无缝集成以及用户体验,强调清晰度和满意度。限制被承认,从而敦促对加密技术的弹性,鲁棒性的鲁棒性以及对新兴技术的整合的进一步研究。总而言之,Rosecliff算法是一种有希望的解决方案,从而有效地应对现代身份验证挑战的复杂性,并为未来的数字安全研究和增强功能奠定了基础。
克拉马斯山脉生态区是北美地区发现的树木最多的地区。俄勒冈州大约有 4,000 种本土植物,其中约有一半位于克拉马斯山脉生态区。该生态区被誉为全球植物学重要地区(全球仅有的
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术
序列的模式(4)。但是,共识序列并不代表序列中的所有信息,因为在许多情况下,其他碱基也出现了很大的频率。例如,主要是Aug的procaryotic启动密码子也有时也有Gug和Uug。如果人们忽略了这些可能性,则已经扭曲了数据。这是共识序列是结合位点的差模型的几个原因之一(5,6)。在绑定站点中特定位置的重要性更清楚地始终如一地描述了那里的模式所需的信息(7,8)。从同样可能的可能性中选择一个符号或状态需要一个“位”信息。例如,要向某人传达硬币弹的结果需要1个信息,因为只有一个是不是一个问题:“是头吗?”。如果绑定站点中的位置始终包含一个基数(例如g),然后我们需要两个信息,因为需要回答两个是的问题:“是A还是G?”(即是嘌呤吗?)和'是A还是C?”。(如果两个问题的答案都是“否”的,则必须是T。)此外,如果职位包含两个基础(例如有时A,有时是G),只有一个问题就足够了,因为四分之二的选择等同于两个选择中的一个。因此,仅需要一个位来描述仅包含嘌呤的结合位点的位置,但是需要两个位来描述始终包含腺嘌呤的位置。在1948年,克劳德·香农(Claude Shannon)展示了如何做到这一点(7,8)。如果碱的频率不是完全概括的,则需要更复杂的计算以在某个位置找到平均信息。在香农之后,我们将不确定性度量定义为:
心理负荷 (MWL) 是人体工程学和人为因素中最广泛使用的概念之一,代表着日益重要的主题。由于许多工作环境中的现代技术对操作员的认知要求越来越高,而体力要求却越来越低,因此了解 MWL 如何影响绩效变得越来越重要。然而,MWL 也是最模糊的概念之一,具有众多定义和维度。此外,MWL 研究倾向于关注复杂、通常安全至关重要的系统(例如运输、过程控制)。在这里,我们概述了过去三十年来在复杂系统设计中对 MWL 的理解、测量和应用的现状。最后,我们讨论了应用研究面临的当代挑战,例如认知工作量和身体工作量之间的相互作用,以及工作量“红线”的量化,该红线指定操作员何时接近或超过其性能容忍度。
欧盟面临着将财政纪律与战略目标相结合的复杂挑战,特别是在绿色转型的背景下。新的经济治理框架引入了更灵活、针对具体国家的财政政策方法,旨在平衡预算约束和大量投资。从严格的基于规则的体系转变为量身定制的基于经济分析的模型,代表着向前迈出的一步。然而,各国政府在支持欧盟战略方面面临着巨大的资金缺口。新经济基金会的预测估计,仅欧盟绿色和社会目标每年的投资缺口就高达 3046 亿欧元至 4239 亿欧元。如果没有进一步的财政创新和下一代欧盟等计划的扩展,欧盟就有可能无法实现其长期战略目标。本讨论文件旨在概述新经济治理框架的主要改革,并评估其支持欧盟战略目标的潜力。
在这项研究中,Points Consulting (PC) 致力于估计如果俄勒冈州南部和东部被并入爱达荷州,其经济将如何变化。我们的兴趣不在于探索社会或政治影响,而在于经济影响。图 1 显示了感兴趣的区域,此后称为转换县。对于这项研究,PC 依赖于 CGI 确定的边界选择,包括三个县(Wasco、Jefferson 和 Deschutes)的部分,如图 1 所示。只要有可能,PC 就会发布针对 22 个转换县的估计值,在这些情况下,部分县的数据已向下调整以考虑这些县的相关部分。然而,可用数据的限制并不总是允许对县进行特定级别的分解。
摘要 在图灵的“通用机器”之后,本文将直觉作为一个生成性概念和镜头来展现战后跨大西洋文化中人机关系的有效谱系。作为一种超越理性分析的感知、认识、预测和驾驭世界的方式,直觉对于适应我们当代的“算法条件”至关重要,在这种条件下,机器学习技术正在积极地重新分配人类和机器之间的认知,改变(非)人类经验的性质,并重新表达文化价值和欲望的问题。本文关注三个关键的历史时刻,使我们能够回顾性地瞥见英国和北美对我们与“新”技术不断变化的关系的兴趣和紧迫感的新兴凝聚—— 1) 20 世纪 50 年代:人工智能和控制论的诞生; 2)20 世纪 80 年代:个人电脑和软件文化的兴起;3)2010 年代:算法生活的开始。在每个时期,直觉的特定方面都表现出重要的作用,激发了我们与计算技术的情感和文化纠葛。虽然直觉在特定的历史关头获得了有效的牵引力,既是“人类”的本质定义,也是非人类的本质定义,但我认为,解决当前机器学习架构所引发的感官、社会政治、文化和伦理问题,需要适应内在的人机算法纠葛以及它们所居住和不断重塑的技术社会生态。