人工智能(AI)和脑科学的进步将对社会产生巨大影响。尽管基于这些进步的技术可以提供巨大的社会利益,但采用新技术会带来各种风险。本文首先回顾了人工智能和脑科学的共同发展以及脑启发的AI在可持续性,医疗保健和科学发现方面的好处。然后,我们考虑这些技术的可能风险,包括故意滥用,自动武器,通过大脑计算机接口的认知增强,社交媒体的阴险效果,不平等和持续发展。我们还讨论了将道德原则付诸实践的实用方法。一个建议是停止为AI代理提供明确的目标,并使他们继续学习人类的偏好。另一个是从人类社会发展的民主机制中学习,以避免权力过度稳固。最后,我们不仅强调了专家的公开讨论的重要性,而且还包括各种各样的外行意见。©2022作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
贸易/设备名称:Brainlab Elements Guide XT、指南 3.0 法规编号:21 CFR 882.5855 法规名称:脑刺激编程规划软件 监管类别:II 类 产品代码:QQC 日期:2022 年 2 月 24 日 收到日期:2022 年 2 月 28 日 亲爱的 Chiara Cunico: 我们已审查了您根据第 510(k) 条提交的上市前通知,该通知表明您有意销售上述设备,并已确定该设备与 1976 年 5 月 28 日(医疗器械修正案颁布日期)之前在州际贸易中合法销售的同类设备基本等同(就附件中所述的使用指征而言),或与根据《联邦食品、药品和化妆品法案》(法案)的规定重新分类的设备基本等同,这些设备不需要获得上市前批准申请 (PMA) 批准。因此,您可以根据该法案的一般控制规定销售该设备。虽然本函将您的产品称为设备,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备列表、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不会评估与合同责任担保相关的信息。但我们提醒您,设备标签必须真实且不得误导。如果您的设备被归类(见上文)为 II 类(特殊控制)或 III 类(PMA),则可能会受到其他控制。影响您设备的现有主要法规可在《联邦法规》第 21 篇第 800 至 898 部分中找到。此外,FDA 可能会在《联邦公报》上发布有关您设备的进一步公告。请注意,FDA 发布实质等同性判定并不意味着 FDA 已判定您的设备符合该法案的其他要求或其他联邦机构管理的任何联邦法规和规章。您必须遵守该法案的所有
信托:有关伦理委员会批准的“合格盲目信托”和某些其他“例外信托”的详细信息无需披露。您是否已从本报告中排除了使您、您的配偶或受抚养子女受益的此类信托的详细信息?
语言或语音障碍的特征是以下障碍之一,会对学生的教育表现产生不利影响:语言障碍是由有机或非有机原因引起的,是在自然界非成熟的,是由有机或非有机原因引起的。语言障碍会在以下一个或多个组成部分中影响学生的主要语言系统:单词检索,语音学,形态,语法,语义,语用学。语音障碍可能包括流利性,表达和语音障碍在多个语言本质上是非成熟的一项语言任务中的语音障碍,包括损害,包括损害,这些障碍是口腔外周机制缺乏结构和功能的结果。
摘要 — 双态天线大规模平面阵列的设计有助于在最小化旁瓣电平 (SLL) 和控制第一零波束宽度 (FNBW) 变化的约束下使用遗传算法来降低能耗。通常,平面阵列用于基于电池使用的通信应用,例如便携式雷达。本文使用实数编码遗传算法 (RCGA) 优化了具有 1600 个相同天线元件的均匀矩形阵列 (URA)。执行优化过程是因为以 ON-OFF 状态的形式找到辐射元件电流激励权重的最佳集合以节省消耗的功率。因此,选择了阵列因子 (AF) 的最高性能和所需的波束宽度。本文提出的主要贡献是能够使用 RCGA 算法通过将阵列划分为阵列子集来优化大量阵列元素。执行模拟结果以验证遗传稀疏 URA 的有效性。通过选择能够高效加扰的天线元件,相当于节省了 24.4% 的能耗。本文使用 MATLAB CAD Ver. 2018a 作为平台获得了结果。索引术语 —RCGA、节能、规划器阵列、成本函数、双态天线。
信息系统负责管理四个主要领域的系统:学生、财务、人力资源/薪资和内容管理(学区和学校公共网站)。通过结合购买第三方软件和内部定制开发的应用程序,信息系统确保准确收集、安全存储、高效组织所有领域的信息,并以易于理解的格式呈现给决策者。除了在线交易系统外,信息系统还构建和维护学区的主要数据仓库。它将来自所有不同系统的数据合并到一个数据库环境中,以便在所有学区数据之间建立有意义的联系。它还有助于快速检索数据,以便及时以可用形式呈现给用户。
我们已审查了您根据第 510(k) 条提交的上述器械上市意向通知,并确定该器械与 1976 年 5 月 28 日(即《医疗器械修正案》颁布日期)之前在州际贸易中合法销售的同类器械或已根据《联邦食品、药品和化妆品法案》(法案)的规定重新分类且无需获得上市前批准申请 (PMA) 批准的器械基本相同(就附件中所述的使用指征而言)。因此,您可以根据该法案的一般控制规定销售该器械。虽然本函将您的产品称为器械,但请注意,一些已获准的产品可能是组合产品。位于 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm 的 510(k) 上市前通知数据库可识别组合产品提交。该法案的一般控制条款包括年度注册、设备清单、良好生产规范、标签以及禁止贴错标签和掺假的要求。请注意:CDRH 不会评估与合同责任担保相关的信息。但我们提醒您,设备标签必须真实,不得误导。
结果,他们必须能够获得高效、优质和有效的服务。不幸的是,由于皮肤科医生短缺问题日益严重,北美大多数患者的情况并非如此,平均等待专业医生的时间超过两个月。因此,越来越多的医疗专业人员提供皮肤科服务,以满足这种快速增长的需求。识别皮肤病变的性质在很大程度上依赖于护理提供者的专业知识。然而,由于皮肤图像分析和分类的复杂性,这个过程通常对即使是最有经验的专家来说也很有挑战性,因此会产生大量不必要的活检标本。患者接受侵入性手术的经济负担和身体创伤,再加上皮肤癌病例的低假阳性率,使得有必要采用新一代工具来支持准确的、基于证据的临床决策。人工智能如何支持这一日益增长的需求?利用技术的力量代表着对色素性皮肤病变的分析和诊断有了巨大的进步。人工智能 (AI) 技术有能力彻底改变医疗专业人员为患者提供最佳医疗结果的方式。机器学习能力成为战略技术盟友,可根据对数百万先前分类的病例的累积分析提供高度准确的决策支持。旨在与该领域的主要利益相关者密切合作的全球举措更好地展示了 AI 在皮肤病学中的实施潜力。可以通过该领域不同研究领导者的累积参与来研究和促进 AI 算法的力量和特异性,就像 ISIC 图像分类挑战赛所鼓励的那样。
