。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2025年2月7日。 https://doi.org/10.1101/2025.02.07.636955 doi:Biorxiv Preprint
原子建模通常分为两种不同类型的模拟。一方面,包括Hartree -Fock和密度功能理论(DFT)方法在内的量子方法被认为是最准确的,几乎用于任何类型的化学物种[1,2]。另一方面,经典力场用于执行精度较低的大规模和长期模拟[3,4]。但是,仍然很难连接这两种方法,直到现在,人们几乎无法执行涉及数百万个原子的纳秒原子的模拟,同时保留量子方法的准确性。在这种情况下,近年来已经提出了机器学习互动电位(MLIP),并显示出实现此类模拟的巨大潜力[5-7]。目前考虑了许多方法,包括人工神经网络[8],高斯近似方法[9],线性电位[10,11],频谱邻域分析电位[12],对称梯度域机器学习[13,14]和矩张量张量的电位[15]。这些技术的成功得到了成功解决的各种材料的认可:纯属金属[16-20],有机分子[21-24],氧化物[25,26],水[27 - 31],无定形材料[32 - 37]和HYBRIDPEROVSKITES [32 - 37]和HYBRIDERIDPEROVSKITES [38]。对于所有这些技术,主要过程包括对力场使用非常通用的分析公式,然后将其进行参数化以匹配DFT计算数据库,包括总能量,力和应力张量。但是,人们承认MLIP有时会显示出对学习数据库中未包含的系统的可传递性。在最坏的情况下,MLIP SO-WELL拟合到其学习数据库中,可以在其外观察到非物理行为。为了解决此问题,主要建议是定期检查电位的准确性,因为进行了机器学习分子动力学模拟并改善MLIP“ fly the Fly” [38 - 40]。,据我们所知,这种方法的这种缺陷从未经过定量调查,而在被用户和开发人员承认的同时。
摘要。石墨烯具有探索奇异的超导性的承诺。使石墨烯在大尺度上成为超导体是一个持久的挑战。可能使用超导底物依靠外延生长的石墨烯。这样的基材很少,通常会破坏电子带结构的狄拉克特征。Using electron diffraction (reflection high-energy, and low-energy), scanning tunneling microscopy and spectroscopy, atomic force microscopy, angle-resolved photoemission spectroscopy, Raman spectroscopy, and density functional theory calculations, we introduce a strategy to induce superconductivity in epitaxial graphene via a remote proximity effect, from rhenium底物通过插入的金层。弱的石墨烯-AU相互作用与强烈不希望的石墨烯 - RE相互作用形成鲜明对比,通过减少的石墨烯波纹,石墨烯和基础金属之间的距离增加,线性电子分散体和特征性振动签名,这证明了后者的两种特征,也揭示了略微的plate特征。我们还揭示了接近性超导性的插入方法的主要缺点是在石墨烯中产生高点缺陷密度(10 14 cm -2)。最后,我们在低温下展示了石墨烯/AU/RE(0001)中远程接近性超导性。
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
人工智能继续进步,软件代理开始发挥作用 机器人和自动化促进新一轮的回流努力 关键基础设施的网络风险在国家安全议程中日益凸显 2025 年,我们所关注的关键趋势的创新步伐将继续加快,包括人工智能在企业软件、网络安全和机器人技术中的应用,为敏捷投资者提供长期机会。 数字创新推动全球经济增长 人工智能、药物发现、核聚变和量子计算领域的最新发展表明,创新步伐正在加快。竞争市场的性质,加上人类的聪明才智,导致了发明和新想法的不断涌现。从农业时代的磨坊到信息时代的集成电路,人类正在不断重塑我们周围的世界。人工智能主宰了 2024 年,是技术进步和盈利增长的驱动力。在去年获得两项诺贝尔奖并通过一项关键基准测试后,人工智能的发展并没有放缓。谷歌 DeepMind 首席执行官 Demis Hassabis 在本月的世界经济论坛上表示,公司有望在今年将 AI 设计的候选药物提交临床试验。虽然更平凡但影响力同样巨大的是,随着人工智能技术寻求实现其提高生产率的承诺,它准备从仅仅回答问题转向采取行动。我们还深入探讨了人工智能推动的制造业复兴。生产瓶颈、劳动力短缺和地缘政治考虑推动了人们对回流的新兴趣。值得注意的是,在美国,过去四年来对制造设施的投资增长了两倍多。今年,该国第一家新的尖端半导体工厂将开始量产。此外,随着物理 AI 模型的脱颖而出,工业机器人不仅数量越来越多,而且越来越智能、越来越灵活。最后,我们来谈谈网络安全,这一直是政府和企业领导人的首要任务,但 2025 年的风险会更高。根据国际货币基金组织的数据,在过去四年中,网络攻击增加了一倍多,令人震惊的是,包括通信网络和发电站在内的关键基础设施面临的风险也更加突出。虽然人工智能已经在检测漏洞和自动响应方面发挥了作用,但这项技术是一把双刃剑,因为对手也会使用这种工具。这场网络军备竞赛提供了持续的投资机会。
根据研究,肝细胞癌(HCC)在死亡原因方面在全球排名第三,并且是总体上第五大常见的癌症类型。 因此,寻找新颖的诊断和治疗方法至关重要。 使用纳米技术作为一种癌症治疗,最近引起了很大的兴趣。 尽管在检测和治疗方面取得了重大进展,但在完全消除这种疾病之前还有很长的路要走。 因此,寻找诊断和治愈疾病的创新方法至关重要。 尤其是,具有与许多生物分子相当的大小相当的金属纳米颗粒(NP)及其纳米级结构的实质惰性引起了极大的兴趣。 由于其特殊的光学质量,通过各种配体的附着,生物相容性(生物启动性和低细胞毒性)以及出色的光学特性,金NP(AUNP)获得了重大兴趣。 当前的评论讨论了各种领域中AuNP的效率,包括成像,免疫疗法和用于治疗肝癌的光热疗法。 最后,本综述总结了AUNPS前景的局限性。根据研究,肝细胞癌(HCC)在死亡原因方面在全球排名第三,并且是总体上第五大常见的癌症类型。因此,寻找新颖的诊断和治疗方法至关重要。使用纳米技术作为一种癌症治疗,最近引起了很大的兴趣。尽管在检测和治疗方面取得了重大进展,但在完全消除这种疾病之前还有很长的路要走。因此,寻找诊断和治愈疾病的创新方法至关重要。尤其是,具有与许多生物分子相当的大小相当的金属纳米颗粒(NP)及其纳米级结构的实质惰性引起了极大的兴趣。由于其特殊的光学质量,通过各种配体的附着,生物相容性(生物启动性和低细胞毒性)以及出色的光学特性,金NP(AUNP)获得了重大兴趣。当前的评论讨论了各种领域中AuNP的效率,包括成像,免疫疗法和用于治疗肝癌的光热疗法。最后,本综述总结了AUNPS前景的局限性。
《金羊毛》的故事情节无法确定精确的历史时间线,因为在荷马写下史诗《伊利亚特》和《奥德赛》时,即公元前 8 世纪左右,金羊毛已经存在于有记载的历史范围之外。虽然考古学已经证实一些神话故事,如特洛伊战争,包含部分事实,但伊阿宋寻找金羊毛的过程却跨越了幻想与现实的边界。《金羊毛》中描绘的社会反映了古希腊黑暗时代的精神,这一时期的特点是迈锡尼等城市在公元前 1200 年左右衰落,几个世纪后复杂文明的复兴。社区很小,严重依赖国王或领导人的保护。这些村庄范围之外的世界十分广阔,每一片陌生的土地上都潜伏着潜在的危险。杰森的旅程从希腊中部的色萨利出发,穿过爱琴海,到达利姆诺斯岛等真实岛屿,途经险峻的山脉、波涛汹涌的大海和阴暗的森林。爱尔兰民俗学家帕德里克·科伦于 1921 年重述了《金羊毛和阿喀琉斯之前的英雄》,威利·波加尼用生动的插图重新诠释了古典希腊神话。该系列于 1922 年获得纽伯瑞奖,并多次更新和重新出版,包括 2010 年版,由波西·杰克逊系列的著名作家里克·里尔登作序。这本书围绕战争、爱情、牺牲、自私、荣誉、责任和转变等主题,编织了神、凡人和奇幻生物的故事。虽然杰森、宙斯、普罗米修斯和喀耳刻等著名人物占据了中心位置,但鲜为人知的人物也受到了关注,包括关于阿普绪尔托斯被杀、埃厄忒斯国王和莱姆尼亚少女的故事。虽然被归类为儿童读物,但其丰富、富有诗意的语言将吸引年轻和年长的读者。故事分为三个主要部分,每个部分都围绕杰森和阿尔戈英雄在美狄亚的请求下为佩利阿斯国王取回神话中的金羊毛的危险旅程展开。本系列中的神话都与杰森和金羊毛的中心故事有关。第一部分包括“阿尔戈”和“佩利阿斯国王”等故事,杰森发现佩利阿斯国王希望他得到金羊毛,这样他就可以远离王国。尽管知道这是一项艰巨的任务,杰森还是同意这样做,以成名。在第二部分中,我们看到了《女巫美狄亚》和《夺取金羊毛》等故事,其中杰森和他的朋友们面临着获得金羊毛的艰难挑战。他们必须驯服公牛,击退军队,并在美狄亚的帮助下打败一条蛇。第三部分包括《女猎手阿塔兰塔》和《忒修斯与牛头怪》等故事,“忒修斯和赫拉克勒斯等英雄面临自己的挑战和冒险。编撰这部作品集的帕德里克·科伦也是一位诗人、剧作家和小说家,以爱尔兰血统和文学贡献而闻名。
屏幕打印电极(SPE)是广泛用于电化学传感器构造中的多功能工具,被认为是设计一次性电分析传感器的有效平台。他们提供了许多优势,包括快速和可靠的分析,高灵敏度,良好的选择性,易用性,微型化,均匀性,可移植性和成本效益。1出现了屏幕打印的概念,以满足对较小,负担得起的电化学设备的需求,从而使这些工具更容易访问和实用。屏幕打印技术通过葡萄糖生物传感器的开发获得了开创性的认可和商业成功。2在2000年代初期,基于SPE的设备的商业化在环境监测,食品安全和医疗保健等领域之间大大扩展。3的可负担性,可移植性和质量生产的易用性使SPE对包括药物和生物学分析在内的不同应用具有极大的吸引力。4个SPE已成功应用于现场检测各种矩阵的各种分析物,从而可以检测药物和其他生物分子。1 SPE的主要优点之一是它们的适应性:它们可以用作一次性,现成的电极或表面修饰以进行专业应用,使其适合于痕量测定生物分子。5,6 SPE技术的最新进步致力于通过整合纳米材料的创新表面修饰策略来提高性能。7修改用于提高灵敏度,提高选择性和总体稳定性的提高。8通常考虑两种主要方法:首先,通过结合聚合物,金属,复合物,酶和其他材料来改变印刷墨水组成,以开发新型的基于墨水的SPE;第二,修改
金纳米粒子 (AuNPs) 因其独特的物理化学性质而在癌症治疗和药物输送方面表现出巨大的前景。利用植物提取物和植物化学物质合成 AuNPs 是一种简单、快速、环保且经济高效的替代方法。本综述深入分析了植物介导的 AuNPs 在癌症治疗中的作用,重点介绍了其核心机制、药物输送应用和未来潜力。它强调了绿色合成方法对癌症治疗的优势,详细介绍了所涉及的过程,并重点介绍了用于纳米粒子生物合成的各种植物。本综述还探讨了植物介导的 AuNPs 的抗癌作用,例如它们选择性靶向癌细胞和诱导细胞凋亡的能力,这得到了体外和体内研究的支持。此外,还研究了这些纳米粒子在癌症治疗的靶向药物输送中的应用。本综述解决了生物相容性和毒性问题,为这些纳米粒子的安全性提供了见解。讨论了未来的研究方向和挑战,以克服当前的局限性并最大限度地提高其临床适用性。总之,植物介导的 AuNP 为癌症治疗和药物输送提供了一种可持续且有效的方法,其绿色合成和多种抗癌特性凸显了其潜力。进一步的研究对于充分发挥其临床益处至关重要。
资料来源:高盛资产管理公司、标准普尔。所有信息截至 2024 年 9 月 30 日。1999-2000 年份综合指数的起始日期为 1999 年 7 月 1 日。年份综合指数按账户注资年份分组,因为产生已实现资本损失的能力受市场条件影响。使用的标准普尔 500 税后指数回报率为税后回报率,扣除美国个人股息税,衡量在假设最高边际联邦所得税率的情况下,调整美国个人投资者就合格股息支付的税款后的总回报表现。不能保证这些目标一定会实现。所呈现的综合指数可能反映客户的自由裁量活动。综合净费用回报率是通过调整每个月费用总额综合回报率,除以适用于任何潜在客户的最高模型费用(300 个基点)来计算的。模型费用包括所有费用、交易成本、投资管理费、托管费和其他行政费用。高盛不提供会计、税务或法律建议。请参阅本演示文稿末尾的附加披露。显示的估计税后综合业绩取决于所采用的具体计算方法,不得用于税务报告目的。根据数据可用性,估计税后业绩代表综合业绩中包含的所有应税投资组合。由于每个客户的实际情况和税率可能与此过程中使用的税率不同,因此报告的估计回报可能不等于特定客户的实际税后回报。以下是计算方法中某些重大假设的摘要,但并非所用方法的完整摘要。请参阅本演示文稿末尾的附加披露。最高成本是用于处理已实现资本收益的会计惯例。税后业绩计算包括投资组合产生的已实现损失,但不考虑未实现收益。估计税后业绩可能包括因洗售而不允许的损失,因此回报将被夸大。税后业绩预估是根据有关成本基础的内部信息得出的,成本基础可能与证券的实际成本基础不同,例如,由于虚假交易、公司行为或损耗方法,在某些情况下,这会导致回报被夸大或低估。GSAM 利用其关联托管人提供的已实现收益和损失信息来计算每个组合的业绩。此外,税后业绩预估包括从非关联托管人收到的某些有关成本基础调整的假设,在某些情况下,这会导致业绩被夸大。该业绩假设净已实现损失的税收收益在实现当天确认,假设的税收收益具有根据账户业绩立即再投资和随时间复利的效果。该业绩假设账户中的净已实现资本损失已完全用于抵消账户外同一持有期的已实现资本收益,而这可能并不存在。该业绩假设所有股息收入均按最高联邦合格股息税率征税,该税率低于非合格股息收入的税率。该业绩应用资本收益和/或损失实现和收入时的最高个人联邦税率。该业绩应用资本收益和/或损失实现和收入时的最高个人联邦税率。当前期间使用的联邦税率为短期收益 40.8%、长期收益 23.8% 和股息收入 23.8%。不考虑地方和州所得税以及非美国税。税收损失收获和资本损失的实现降低了投资组合的成本基础,这可能导致未来净收益增加或净损失减少。如果投资组合既没有被赠予也没有被遗赠,投资者将在清算时就已实现的收益纳税,这将影响税后回报。税后业绩作为 GIPS 综合报告的补充信息呈现,不是 GIPS 标准所要求的,也不会由独立验证机构验证是否符合 GIPS 标准。根据数据可用性,税后综合业绩计算中使用的账户范围可能与 GIPS 报告中使用的账户范围不同。请参阅材料附录中的 GIPS 报告。过往业绩不能预测未来回报,也不能保证未来结果,未来结果可能会有所不同。不考虑地方和州所得税以及非美国税。税收损失收获和资本损失的实现降低了投资组合的成本基础,这可能导致未来净收益增加或净损失减少。如果投资组合既不是赠与也不是遗赠,投资者将在清算时就已实现的收益纳税,这将影响税后回报。税后业绩作为 GIPS 综合报告的补充信息呈现,不是 GIPS 标准所要求的,也不会由独立验证机构验证是否符合 GIPS 标准。根据数据可用性,税后综合业绩计算中使用的账户范围可能与 GIPS 报告中使用的账户范围不同。请参阅材料附录中的 GIPS 报告。过往业绩不能预测未来回报,也不能保证未来结果,未来结果可能会有所不同。不考虑地方和州所得税以及非美国税。税收损失收获和资本损失的实现降低了投资组合的成本基础,这可能导致未来净收益增加或净损失减少。如果投资组合既不是赠与也不是遗赠,投资者将在清算时就已实现的收益纳税,这将影响税后回报。税后业绩作为 GIPS 综合报告的补充信息呈现,不是 GIPS 标准所要求的,也不会由独立验证机构验证是否符合 GIPS 标准。根据数据可用性,税后综合业绩计算中使用的账户范围可能与 GIPS 报告中使用的账户范围不同。请参阅材料附录中的 GIPS 报告。过往业绩不能预测未来回报,也不能保证未来结果,未来结果可能会有所不同。