数字数据的快速增长是当今时代的特征,预计到 2025 年,全球数据量将超过 175 ZB。这种巨大的数据融合对处理系统提出了巨大的要求,因为传统方法难以跟上数据量、速度和种类的不断增长。云计算已成为一种重要的推动因素,为管理和分析这些无尽的数据集提供了灵活的基础。尽管云平台具有这些功能,但大数据处理的效率通常取决于处理大规模操作所需的计算的优化。由于数据处理速度通常落后于数据生成速度,因此迫切需要升级处理解决方案。
这项研究历时五年,深入探讨了这种融合对网络安全的影响,特别关注人工智能/自然语言处理 (NLP) 模型和量子加密协议,特别是 BB84 方法和特定的 NIST 批准算法。该研究利用 Python 和 C++ 作为主要计算工具,采用“红队”方法,模拟潜在的网络攻击来评估量子安全措施的稳健性。为期 12 个月的初步研究奠定了基础,本研究旨在在此基础上进行扩展,旨在将理论见解转化为可操作的现实世界网络安全解决方案。该研究位于牛津大学技术区,受益于最先进的基础设施和丰富的协作环境。该研究的总体目标是确保随着数字世界向量子增强操作过渡,它仍然能够抵御人工智能驱动的网络威胁。该研究旨在通过迭代测试、反馈集成和持续改进来促进更安全、量子就绪的数字未来。研究结果旨在广泛传播,确保知识惠及学术界和全球
差异隐私 (DP) [1,2] 是一个严格的数学框架,用于在分析和处理数据集的同时保留每个个体的信息。直观地说,差异隐私算法可以学习由 n 个用户组成的数据集的统计属性,但几乎不会泄露每个用户的任何信息。在处理医院数据、银行、社交媒体等敏感数据时,此类机制具有重要意义。除了隐私保护数据分析外,差异隐私还在计算机科学的其他领域找到了多种应用,如机器学习 [3、4、5、6]、统计学习理论 [7、8、9、10]、机制设计 [11]。自其推出以来,已开发出多种用于隐私数据分析设计的分析工具 [12、13、14、15]。最常见的是,这些机制利用诸如在最终输出中添加噪声或将输入随机化之类的技术。可以使用简单的工具(例如基本组合规则和后处理的鲁棒性)对由这些块构建的复杂机制进行松散的分析。然而,实际应用中隐私和实用性之间的固有权衡引发了更细化规则的发展,从而带来了更严格的隐私界限。这个方向的趋势是表明多种随机性来源放大了标准 DP 机制的保证。特别是,已经证明了子采样、迭代、混合和改组等 DP 放大结果 [16,17,18,19]。鉴于过去几十年量子计算和量子信息对计算机科学不同领域产生了重大影响,一个有趣的问题是量子和量子启发算法是否可以增强差异隐私。随着如今噪声中型量子设备 (NISQ) 的出现,这个问题变得更加重要 [20]。一方面,这些设备的噪声特性(之前也被 [21] 所利用),另一方面,量子算法的潜在能力,使得这种量子或混合量子经典机制成为差异隐私角度的一个有趣研究课题。此外,机器学习和差异隐私之间的联系表明,回答这个问题可以带来对量子机器学习能力的有趣见解。
这项研究旨在使用两种元启发式优化算法优化12乘型涡轮螺旋桨飞机出租车的飞行耐力:灰狼优化(GWO)和蚂蚁殖民地优化(ACO)。最初,采用了梯度下降方法来估计飞机的最大重量。随后,将飞机的性能特性用作设计变量和飞行耐力在特定限制下进行了优化,而不会改变飞机的物理结构。实施了优化过程,并根据性能和效率进行了评估和比较结果。这项研究表明,使用随机和集体策略提到的两种算法能够提高飞机的效率。此外,与最初的耐力相比,对三架真实飞机(撞击器,比奇克船和庞巴迪)进行了优化的飞行耐力。在这种情况下,蚂蚁菌落优化算法表现出比灰狼优化算法更好的性能,灰狼优化算法可能会对飞行运营产生积极影响而无需加油或寻找替代机场的过程。
ARC机会旨在使个人研究人员有机会和时间专注于新生的,范式转移的想法。虽然可以提出来自同一组织的多个研究人员,但预计提议的研究概念的总体努力水平应等于一个全职等价(FTE),而12个月作为ARC主题设计的想法是针对名义上将在1年内进行全年努力(1 fte)的想法而设计的。darpa预计,从事拟议思想的个人主要关注整个绩效期间的努力,以最大程度地实用。最高性能为12个月。每个ARC奖的总费用应从100,000美元到300,000美元不等,包括直接和间接费用以及研究生学费(如果适用)。根据Master Arc EA,DARPA-AE-25-02中概述的材料,设备和其他直接成本(ODC)的拟议费用受到限制。在任何情况下都不会授权获利。虽然没有预期的资源共享,但可以在提案中提供。darpa了解并非所有的想法和组织都可能适合此参数范围,并将与建议者合作,以确保可以使用所需的资源来探索真正的创新想法。可能不提出旅行和出版费用。不允许亚武器。
本文系统地回顾了机器学习算法,地理信息系统(GIS)和遥感(RS)技术的综合使用,以预测美国的降雨模式和洪水事件,气候变化的越来越高,降雨量的准确预测和洪水风险的准确预测变得至关重要。GIS可以实现易洪水区域的空间分析和映射,支持风险评估和灾难准备。rs贡献实时卫星图像和环境数据,对于跟踪降雨模式和评估表面条件至关重要。机器学习算法通过提供预测性建模功能来增强这些技术,从而可以更准确地预测降雨强度和洪水潜力。本文探讨了GIS,RS和机器学习之间的协同作用,强调了它们对提高灾难管理中洪水预测准确性和决策的综合影响。的关键挑战,包括数据异质性,计算需求和不同数据集的集成。此外,本文还审查了有关数据共享和技术采用的当前政策,强调了对支持创新的监管框架的需求,同时确保数据隐私和准确性。通过对最近的研究的分析,本文介绍了将这些集成技术用于洪水预测的优势和限制的全面概述,从而提供了对未来方向的见解,并提出了增强洪水管理系统的建议。审查得出的结论是,综合的GIS,RS和机器学习应用程序将需要解决与数据相关的挑战,并促进整个机构之间的协作努力,以增强美国的洪水预测和弹性能力
We provide a unified analysis of two-timescale gradient descent ascent (TTGDA) for solving structured nonconvex minimax optimization problems in the form of min x max y ∈Y f ( x , y ), where the objective function f ( x , y ) is nonconvex in x and concave in y , and the constraint set Y ⊆ R n is convex and bounded.在凸 - 孔循环设置中,单次梯度下降(GDA)算法被广泛用于应用中,并且已被证明具有强大的收敛保证。在更一般的设置中,它可能无法收敛。我们的贡献是设计ttgda算法,这些算法是有效的,这些算法超出了凸形 - 连接设置,并有效地确定了函数φ(·)的固定点:= maxy∈Yf(·f(·,y)。我们还建立了解决求解平滑和非平滑concove-concave minimax优化问题的复杂性的理论界限。据我们所知,这是对非凸端优化的TTGDA的第一个系统分析,阐明了其在训练生成的对抗网络(GAN)和其他现实世界应用问题中的卓越性能。关键字:结构化的非凸极最小值优化,两次尺度梯度下降,迭代复杂度分析
背景:HIV测试是艾滋病毒预防的基石,也是实现联合国联合国艾滋病毒/艾滋病联合计划(UNAIDS)到2030年终止艾滋病的目标的关键步骤。尽管有相关的调查数据,但使用机器学习(ML)来分析和预测南非成年人的HIV测试方面仍然存在研究差距。需要进一步的研究来弥合这一知识差距并为改善HIV测试的基于证据的干预措施提供信息。目的:本研究旨在通过在南非反复基于成人人群的调查中应用监督的ML算法来确定HIV检测的一致预测指标。方法:将对多波横断面调查数据进行回顾性分析,以确定18岁及以上的南非成年人对HIV测试的预测因子。将在南非国家艾滋病毒患病率,发病率,行为和传播调查(SABSSM)调查的五个周期中应用一种监督的ML技术。人类科学研究委员会(HSRC)于2002,2005,2008,2012和2017进行了SABSSM调查。可用的SABSSM数据集将导入Rstudio(版本4.3.2; Potit Software,PBC),以清洁和删除异常值。将进行卡方检验,以选择HIV测试的重要预测指标。每个数据集将分为80%的培训和20%的测试样本。逻辑回归,支持向量机,随机森林和决策树。将使用一种交叉验证技术将训练样本划分为K折,包括验证集,并且将对每个折叠进行训练。模型的表现将在验证集上使用评估指标进行评估,例如精度,精度,回忆,F 1 -SCOOR,曲线接收器操作特性下的面积和混淆矩阵。结果:SABSSM数据集是HSRC数据库上可用的打开访问数据集。伦理学的批准是从约翰内斯堡大学研究与伦理委员会于2024年4月23日获得的(REC-2725-2024)。HSRC于2024年8月20日授予作者访问所有五个SABSSM数据集。探索数据集以识别可能影响HIV测试吸收的自变量。这项研究的结果将确定一致的变量,预测20年中南非成年人口的艾滋病毒测试吸收。此外,本研究将评估和比较4种不同ML算法的性能指标,最佳模型将用于开发HIV测试预测模型。
摘要 — 在非快速眼动 (NREM) 睡眠期间对脑电图慢波 (SW) 进行听觉刺激,当其在 SW 的上行阶段进行时,已被证明可以改善认知功能。对于 SW 幅度较低的受试者,如老年人或患有帕金森病 (PD) 等神经退行性疾病的患者,SW 增强尤其可取。然而,现有的估计上行阶段的算法在低脑电图幅度和 SW 频率不恒定时存在相位精度较差的问题。我们介绍了两种用于在自主可穿戴设备上实时估计脑电图相位的新算法。这些算法基于锁相环 (PLL) 和首次基于相位声码器 (PV)。我们将这些相位跟踪算法与简单的幅度阈值方法进行了比较。优化后的算法在相位精度、估计 SW 幅度在 20 到 60 µV 之间以及 SW 频率高于 1 Hz 的相位的能力方面进行了基准测试,这些记录来自健康的老年人和 PD 患者。此外,这些算法在可穿戴设备上实现,并在模拟睡眠脑电图以及对 PD 患者的前瞻性记录过程中评估了计算效率和性能。所有三种算法都在 SW 上行阶段提供了 70% 以上的刺激触发。PV 在瞄准低幅度 SW 和频率高于 1 Hz 的 SW 时表现出最高能力。实时硬件测试表明,PV 和 PLL 对微控制器负载的影响都很小,而 PV 的效率比 PLL 低 4%。主动听觉刺激不会影响相位跟踪。这项工作表明,在低幅度 SW 人群中,也可以在家庭睡眠干预期间使用可穿戴设备提供相位精确的听觉刺激。
我们设计了一种称为“增强”的新迭代算法,用于解决一般的优化问题。此算法参数化解决方案搜索规则,并使用强化学习(RL)算法类似于增强算法来更新参数。为了更深入地了解基于RL的方法,我们表明,增强OPT基本上解决了给定优化问题的随机版本,并且在标准假设下,搜索规则参数几乎可以肯定地收敛到本地最佳值。实验表明,增强-OPT优先于其他优化方法,例如梯度下降,遗传算法和粒子群优化,它可以从局部最佳溶液中逃脱到其鲁棒性到对初始值的选择。有了严格的推导,我们正式介绍了使用强化学习来处理反问题的使用。通过为动作选择规则选择特定的概率模型,我们还可以将我们的方法连接到Tikhonov正则化和迭代正则化的常规方法。我们在部分微分方程中采用非线性积分方程和参数识别问题作为示例,以说明如何将强化学习应用于求解非线性逆问题。数值实验强调了增强-OPT的强劲性能,以及其量化错误估计不确定性并确定缺乏解决方案稳定性和唯一性的逆问题的多个解决方案的能力。