在肝PDFF上(PDFF≤50%),并使用相同的实验条件评估了其在实验设置的4.12%的可重复系数,其可重复性系数为2.99%。此外,一个脂肪水幻影在另一项QIBA研究中前往多个地点16,17,并在各种MRI供应商溶液中显示了可重现的PDFF测量。如今,为了获得这些定量的PDFF和R ∗ 2生物标志物,已经开发了几种基于CSE-MRI的基于CSE-MRI的方法。因此,本研究的目的是建立和比较这些方法的定量性能,其准确性的偏见以及在可重复可辨认的研究框架内的精确性限制。18相关,十多年前,ISMRM 2012 Fat Water MRI研讨会提议将PDFF标准化为定量成像生物标志物。收集的算法在众多的体内数据集中进行了基准测试,并开发了MATLAB算法工具箱。它为算法的输入/输出格式提供了标准化,并促进了它们的比较。不幸的是,大多数研究仅提供对PDFF的离散和有限范围的评估,混合脂肪 - 水样品通常低于50%。进行更广泛的评估,
摘要:最坏的数据生成(WCDG)概率度量是作为表征机器学习算法的概括功能的工具。这样的WCDG概率度量被证明是两个不同优化问题的独特解决方案:(a)在数据集中,预期损失的最大化是在数据集中的相对熵相对于参考度量的一组概率测量值的最大化; (b)相对于参考度量,通过相对熵的正则化对预期损失的最大化。这样的参考度量可以解释为数据集中的先验。WCDG累积物是有限的,并根据参考度量的累积量进行了界定。分析WCDG概率度量引起的预期经验风险的浓度,引入了模型的(ϵ,δ) - 固定性的概念。闭合形式表达式显示了固定模型的预期损失的灵敏度。这些结果导致了新的表达式,用于任意机器学习算法的概括误差。这些表达式可以大致分为两个类。第一个涉及WCDG概率度量,而第二个涉及Gibbs算法。此发现表明,对Gibbs算法的概括误差的探索促进了适用于任何机器学习算法的总体见解的推导。
说明定量培养学(AQP)项目的算法始于2009年,以与土壤概况可视化,聚合和分类为该包装(AQP)的土壤概况可视化,聚合和分类有关的一组松散相关的概念和源代码(AQP)。在过去的8年中,该项目已成长为一组相关的R包,这些套件可以使土壤概况数据的定量分析进行介绍和简化。central是一种专业功能和数据结构的新词汇,可以适应土壤概况信息的固有复杂性;释放学科以专注于想法而不是样板数据处理任务。这些功能和数据结构已经过敏感地测试和记录,应用于涉及数十万土壤材料的项目,并将其深入整合到广泛使用的工具中,例如土壤 AQP项目(AQP,SOILDB,SharpShootr,Soarphoreports套件)的组合在USDA-NRCS土壤科学分区内的常规数据分析中起着重要作用。 R套件的AQP套件提供了一个方便的平台,用于弥合Pe dometric理论和实践之间的差距。AQP项目(AQP,SOILDB,SharpShootr,Soarphoreports套件)的组合在USDA-NRCS土壤科学分区内的常规数据分析中起着重要作用。R套件的AQP套件提供了一个方便的平台,用于弥合Pe dometric理论和实践之间的差距。
随着数字技术的增长和互联网的越来越多,网络钓鱼攻击已成为最重要的安全威胁之一。这些攻击旨在访问敏感用户信息并造成财务和安全损失。准确,迅速检测到这些攻击已成为重大复杂性,已成为一个重大挑战。本文研究了用于检测网络钓鱼URL的机器学习模型的使用。对先前研究的综述表明,基本算法可以有效地检测这些攻击,但是它们具有局限性,例如处理复杂数据的能力较低。为提高准确性和性能,已经提出了混合算法结合多个模型以提高检测准确性。本研究中提出的模型是使用混合方法设计的,以解决基本算法的弱点并提高检测准确性。该混合模型利用极端的梯度提升和随机森林作为基本模型,并以逻辑回归为最终模型。该研究采用了标记的网络钓鱼和合法URL的数据集,其特征是从URL结构和行为中提取的特征来训练和评估模型。实验结果表明,与单独使用基本模型相比,所提出的杂种模型可以达到更高的精度和精度。该模型的应用可以有效地提高网络安全性并防止网络钓鱼攻击。
每个作业的说明及其到期日的说明将在必须提交之前大约一周的时间。分配是通过在每个分配指令下方的提交工具在线提交的。学生的责任是确保成功,及时提交每个编程任务 - 尽早开始并仔细遵循指示。损坏或丢失的文件将不是扩展的理由。仔细检查您的提交,并保存所有工作的数字副本。
摘要 - 加密私人信息是防止未经授权访问或阅读的批评步骤。但是,选择可信赖的加密技术至关重要。每年生产许多加密算法,但只有少数已建立的方法来评估其性能。此类方法的一些示例包括SCA的GB/T 32915-2016,NIST的SP 800-22,AIS 20和AIS 31和AIS 31。这些方法仅进行15次测试,这可能需要更多以确定加密方案的工作原理。本研究的目的是提出一个软件程序员1,该软件程序可以通过一系列22个测试来运行其加密数据来评估任何加密方案的功效。为此,提出的软件是基于Python编程语言的Tinker框架之上构建的。通过评估五种不同的加密方法的性能来测试所提出的软件:AES,ARC4,RSA,Logistic Map和SHA-512,并使用20个测试。具有用户友好的界面和轻松的加密算法评估,拟议的软件可以指导您做出评估加密算法的性能的最佳选择。索引条款 - NIS套件,安全性,AES,RC4,Logistic Map,SHA-512,RSA
构图是我们在经典算法设计中认为是理所当然的,并且在特殊的情况下,我们将其视为基本公理,即构成“有效”算法的基本公理应该导致“有效”的算法,即使使用这种直觉来证明我们对“有效效率”的定义合理。组成量子算法比组成经典的算法更为微妙。早就知道,零元量子算法并未构成,但事实证明,使用右算法透镜,有界元素量子算法。实际上,在界面设置中,量子算法甚至可以避免编写有限的纠错随机算法所需的对数因子,这些算法来自通过多数投票来扩增成功概率的界限。在本文中,针对一般计算机科学的听觉,我们试图为这些结果提供一些直觉:为什么组成量子算法很棘手,尤其是在零错误的环境中,但是为什么它在界限环境中比经典构图更好。
从脑信号中估计认知或情感状态是创建被动脑机接口 (BCI) 应用程序的关键但具有挑战性的一步。到目前为止,从 EEG 信号中估计心理工作量或情绪仅在中等分类准确度下可行,因此导致不可靠的神经自适应应用。然而,最近的机器学习算法,特别是基于黎曼几何的分类器 (RGC) 和卷积神经网络 (CNN),已显示出对其他 BCI 系统(例如运动想象-BCI)的前景。然而,它们尚未在认知或情感状态分类方面进行正式研究和比较。因此,本文探讨了此类机器学习算法,提出了它们的新变体,并与经典方法对它们进行了基准测试,以从 EEG 信号中估计心理工作量和情感状态(效价/唤醒)。我们研究了这些方法,同时进行了受试者特定和受试者独立的校准,以走向无校准系统。我们的结果表明,在心理负荷研究的两种条件下,CNN 的平均准确率最高,尽管差异并不显著,其次是 RGC。然而,对于情绪数据集(一个训练数据较少的数据集),同一个 CNN 在两种条件下的表现都不佳。相反,事实证明,使用我们在本文中介绍的滤波器组切线空间分类器 (FBTSC),RGC 具有最高的平均准确率。因此,我们的结果有助于提高从 EEG 进行认知和情感状态分类的可靠性。它们还提供了有关何时使用哪种机器学习算法的指导。
1一般数学是针对高年级学生的课程,他们的未来研究或工作不需要微积分知识,并且基于Acara高级二级课程。除了图理论主题外,它还还包括双变量和时间序列分析,序列,地球几何学和时区以及贷款,投资和年金中的生长和衰减。
15 近似琼斯多项式 63 15.1 阿达玛检验. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... .................................................................................................................................................................................................................................................................................................. 65 15.7 其他算法....................................................................................................................................................................................................................................................................... 66