由于卫星部件尺寸和成本的减小,卫星的使用范围越来越广。因此,一些规模较小的组织已经有能力部署卫星,并在卫星上运行各种数据密集型应用程序。一种流行的应用是图像分析,用于检测陆地、冰、云等。用于地球观测。然而,部署在卫星上的设备的资源受限性质为这种资源密集型应用带来了额外的挑战。在本文中,我们介绍了为该卫星构建图像处理单元 (IPU) 的工作和经验教训。我们首先强调基于部署卫星对在轨卫星图像进行机器学习的资源限制,包括所需的延迟、功率预算和推动这种解决方案需求的网络带宽限制。然后,我们研究了各种边缘设备(比较 CPU、GPU、TPU 和 VPU)在卫星上进行基于深度学习的图像处理的性能。我们的目标是确定在工作负载发生变化时具有灵活性的设备,同时满足卫星的功率和延迟限制。我们的结果表明,ASIC 和 GPU 等硬件加速器对于满足延迟要求至关重要。但是,带有 GPU 的最先进的边缘设备可能会消耗过多的功率,无法部署在卫星上。
Dell Technologies、NVIDIA ® 和 VMware 正在努力让每个企业都能够普及 AI 并释放 AI 潜力。Dell Technologies 验证的 AI 设计经过联合设计和验证,可帮助您充分利用虚拟化对 AI 工作负载的优势。借助这些解决方案,您可以更轻松地在 VMware 虚拟化数据中心中以近乎裸机的性能运行新兴工作负载和现有应用程序,同时优化硬件投资,例如用于模型训练和推理的服务器 GPU。
● 欧洲可以引领世界走向完全开放的 SW/HW 堆栈 ● RISC-V 提供了开源硬件替代方案,以取代主导专有的非欧盟解决方案 ● 欧洲可以通过这些基础构建模块实现完全的技术独立 ● 目前,硬件处于与多年前采用 Linux 时相同的 SW 早期阶段 ● RISC-V 可以统一、集中和建立欧洲新的微电子产业。CPU/GPU/ASIC
AI的出现引起了该行业的关注,并将其提升到2023年初的全球现象。目前正在进行AI基础设施的构建。AI提供商正在建立大型AI培训中心,这些培训中心拥有高功率GPU/CPU/IT,随着时间的流逝,Metros将在更接近客户的Metros中增加“推理数据中心”的能力。AI后端与非常短的光学光学“数据中心”相互连接,该市场经历了从2023年到2024年的显着增长。
Technology OVERWEIGHT Riding the AI-propelled Wave ↔ By Cheow Ming Liang l cheowml@kenanga.com.my The semiconductor industry, which has been on an uptrend cycle since November 2023, is being fuelled by AI adoption, high-performance computing (HPC), and 5G deployment, thus driving strong demand for advanced logic chips, GPUs, and memory (DRAM and NAND 闪光)。的历史模式表明,上升趋势大约是一半,应延伸到CY25或CY26中期,这是WSTS估计的全球销售增长至CY25的全球销售增长到627B的支持。作为全球销售的历史份额的百分比,在最近的结果季节重新校准之后,CY24和CY25的KLTEC收入的共识预测出现在趋势之下。上行修订的空间可能是由正在进行的数据中心装修和与AI相关的需求飙升的驱动。inari(OP,TP:RM3.85),Natgate(OP,TP:RM3.10),KGB(OP,TP:TP:RM4.16)和PIE(OP,TP:RM6.85)仍然是我们的首选,仍然是我们的最高收入的能力和策略性的定位,使其成为当前的增长趋势,使他们成为了当前的增长趋势。
人工智能将影响我们生活的各个方面。它在半导体制造中也发挥着越来越重要的作用。今年 5 月,在比利时安特卫普举行的由 imec 主办的 ITF World 大会上,NVIDIA 总裁、首席执行官兼董事会成员黄仁勋介绍了 NVIDIA 如何与台积电、ASML、应用材料 (AMAT)、D2S、IMS Nano Fabri- cation 和新思科技等公司合作,将人工智能引入芯片制造。黄仁勋表示:“第一波人工智能专注于计算机视觉和语音识别,已经实现了超越人类的能力,并在机器人、自动驾驶汽车和制造业开辟了数万亿美元的商机。先进的芯片制造需要一千多个步骤,要生产出生物分子大小的特征。要制造具有数千万亿个特征的芯片,每个步骤都必须近乎完美才能产生任何输出。每个阶段都会执行复杂的计算科学,以计算要图案化的特征并进行缺陷检测以进行在线工艺控制。芯片制造是 NVIDIA 加速计算和 AI 的理想应用。”黄仁勋表示,D2S 和 IMS Nano Fabrication 使用电子束构建掩模写入器,以在掩模上创建光刻胶图案。“Nvidia GPU 进行图案渲染和掩模工艺校正,”他说。台积电和 KLA 使用 EUV 和 DUV 照明进行掩模检查。“NVIDIA GPU 处理经典物理建模,
由于卫星部件尺寸和成本的减小,卫星的使用范围越来越广。因此,一些规模较小的组织已经有能力部署卫星,并在卫星上运行各种数据密集型应用程序。一种流行的应用是图像分析,用于检测陆地、冰、云等,以进行地球观测。然而,卫星中部署的设备的资源受限性质给这种资源密集型应用带来了额外的挑战。在本文中,我们介绍了为卫星构建图像处理单元 (IPU) 的工作和经验教训。我们首先研究各种边缘设备(比较 CPU、GPU、TPU 和 VPU)在卫星上进行基于深度学习的图像处理的性能。我们的目标是确定能够实现准确结果并在工作负载变化时具有灵活性的设备,同时满足卫星的功率和延迟限制。我们的结果表明,ASIC 和 GPU 等硬件加速器对于满足延迟要求至关重要。然而,最先进的配备 GPU 的边缘设备可能会消耗过多的电力,无法部署在卫星上。然后,我们使用从性能分析中获得的结果来指导即将进行的卫星任务的 IPU 模块的开发。我们详细介绍了如何将此类模块集成到现有的卫星架构中,以及利用此模块支持各种任务所需的软件。
摘要 - 在图形处理单元(GPU)上执行的深神经网络(DNN)的可靠性评估是一个具有挑战性的问题,因为硬件体系结构非常复杂,软件框架由许多抽象层组成。虽然软件级故障注入是评估复杂应用程序可靠性的一种常见且快速的方法,但它可能会产生不切实际的结果,因为它对硬件资源的访问有限,并且采用的故障模型可能太幼稚(即单位和双位翻转)。相反,用中子光束注射物理断层提供了现实的错误率,但缺乏故障传播可见性。本文提出了DNN故障模型的表征,该模型在软件级别结合了中子束实验和故障注入。我们将运行一般矩阵乘法(GEMM)和DNN的GPU暴露于梁中子,以测量其错误率。在DNNS上,我们观察到关键错误的百分比可能高达61%,并表明ECC在减少关键错误方面无效。然后,我们使用RTL模拟得出的故障模型进行了互补的软件级故障注入。我们的结果表明,通过注射复杂的断层模型,Yolov3的误导率被验证为非常接近通过光束实验测得的速率,该速率比仅使用单位倒换的断层注射测量的频率高8.66倍。
摘要 - 由于空间,重量和功率限制,许多机器人系统(例如移动操纵器或四型)无法配备高端GPU。这些约束阻止这些系统利用需要高端GPU才能实现快速政策推断的视觉运动策略的最新发展。在本文中,我们提出了一致性策略,这是学习视觉运动机器人控制的扩散策略的更快且相似的替代方案。凭借其快速推理速度,一致性策略可以在资源受限的机器人设置中实现低延迟决策。通过沿扩散策略的学习轨迹执行自我一致性,从预验证的扩散政策中提炼了一致性政策。我们将一致性策略与6个仿真任务中的扩散策略和其他相关的加速方法进行了比较,以及三个现实世界中的任务,我们在其中演示了笔记本电脑GPU的推断。对于所有这些任务,与最快的替代方法相比,一致性策略会加快推理的速度,并保持竞争性的成功率。我们还表明,统一政策培训程序对预处理的扩散政策的质量是可靠的,这是一个有用的结果,可帮助执业者避免对预审预周化的模型进行广泛的测试。启用此性能的关键设计决策是一致性目标的选择,减少初始样本差异以及预设链条步骤的选择。