摘要:在电子垃圾日益成为全球关注的时代,可生物降解传感器的开发代表着朝着可持续环境监测迈出的关键一步。由不可生物降解材料制成的传统传感器是电子垃圾日益增多的重要原因。本文探讨了人工智能 (AI) 与可生物降解传感器的集成,这不仅可以减轻电子垃圾对环境的影响,还可以提高环境监测系统的精度、实时决策和效率。虽然这些 AI 增强型传感器提供了有希望的进步,但数据隐私、基础设施成本及其部署对环境的影响等挑战仍然存在。此外,本文还讨论了 AI 伦理和偏见缓解的关键问题,强调在开发 AI 驱动技术时需要透明、包容和跨学科的方法。讨论为 AI 增强型可生物降解传感器的未来可能性提供了见解,包括扩大应用、可生物降解材料的进步以及这些技术的道德部署。该论文强调了跨学科合作的必要性,以充分利用这些创新的潜力,同时确保它们符合可持续性和道德目标。
A. Terzopoulou,X。Wang,X.-Z.博士 Chen,B。J. Nelson教授,S。Pané机器人与智能系统研究所教授,Eth Zurich Tannenstrasse 3,CH-8092,CH-8092,瑞士Zurich,瑞士电子邮件:Chenxian@ethz.ch C. Pujante Bioengineering, Eth Zurich Tannenstrasse 3, CH-8092 Zurich, Switzerland e-mail: josep.puigmarti@chem.ethz.ch M. palacios-corella institute de ciencia molecular, universidad de Valencia, cadedradic Jose Beltran 2, paternal, 46980, Spain Dr. J. J. Herrero-Martin Alba Synchrotron Light源,E-08290,Cerdanyola delVallès,巴塞罗那,西班牙X.-H. QIN生物力学研究所,Eth Zurich Leopold-Ruzick-Weg 4,8093Zürich,瑞士教授Jordi Sort DepartomentDeFísica,University defísica,University de Barcelona,E-08193 Cerdanyola del valles,西班牙语A. Terzopoulou,X。Wang,X.-Z.博士Chen,B。J. Nelson教授,S。Pané机器人与智能系统研究所教授,Eth Zurich Tannenstrasse 3,CH-8092,CH-8092,瑞士Zurich,瑞士电子邮件:Chenxian@ethz.ch C. Pujante Bioengineering, Eth Zurich Tannenstrasse 3, CH-8092 Zurich, Switzerland e-mail: josep.puigmarti@chem.ethz.ch M. palacios-corella institute de ciencia molecular, universidad de Valencia, cadedradic Jose Beltran 2, paternal, 46980, Spain Dr. J. J. Herrero-Martin Alba Synchrotron Light源,E-08290,Cerdanyola delVallès,巴塞罗那,西班牙X.-H. QIN生物力学研究所,Eth Zurich Leopold-Ruzick-Weg 4,8093Zürich,瑞士教授Jordi Sort DepartomentDeFísica,University defísica,University de Barcelona,E-08193 Cerdanyola del valles,西班牙语Chen,B。J. Nelson教授,S。Pané机器人与智能系统研究所教授,Eth Zurich Tannenstrasse 3,CH-8092,CH-8092,瑞士Zurich,瑞士电子邮件:Chenxian@ethz.ch C. Pujante Bioengineering, Eth Zurich Tannenstrasse 3, CH-8092 Zurich, Switzerland e-mail: josep.puigmarti@chem.ethz.ch M. palacios-corella institute de ciencia molecular, universidad de Valencia, cadedradic Jose Beltran 2, paternal, 46980, Spain Dr. J. J. Herrero-Martin Alba Synchrotron Light源,E-08290,Cerdanyola delVallès,巴塞罗那,西班牙X.-H. QIN生物力学研究所,Eth Zurich Leopold-Ruzick-Weg 4,8093Zürich,瑞士教授Jordi Sort DepartomentDeFísica,University defísica,University de Barcelona,E-08193 Cerdanyola del valles,西班牙语
这是一篇 PLOS 计算生物学教育论文。大脑以最小化某些成本的方式运作的想法在理论神经科学中普遍存在。由于成本函数本身并不能预测大脑如何找到最小值,因此需要对优化方法做出额外假设来预测生理量的动态。在这种情况下,最速下降(也称为梯度下降)通常被认为是大脑可能实现的优化算法原理。在实践中,研究人员通常将偏导数的向量视为梯度。然而,梯度的定义和最速方向的概念取决于度量的选择。由于度量的选择涉及大量自由度,因此基于梯度下降的模型的预测能力必须受到质疑,除非对度量的选择有严格的限制。在这里,我们对梯度下降的数学进行了教学回顾,并通过文献中的例子说明了使用梯度下降作为大脑功能原理的常见缺陷,并提出了限制度量的方法。
消费级神经技术产品已经问世几十年了。这些产品中的大多数都基于脑电图 (EEG),而脑电图 (EEG) 是一项对噪声敏感的技术。另一种选择是功能性近红外光谱 (fNIRS),这是一种不断发展的神经成像技术,能够实时测量大脑的血流动力学活动。FNIRS 已成功通过功能性磁共振成像 (fMRI) 验证。最近,瑞典公司 Mendi 推出了一款微型无线消费级 fNIRS。本研究旨在比较 Mendi fNIRS 与成熟的实验室 fNIRS 设备对大脑活动的测量结果。19 名参与者(年龄 18-53 岁)进行了两次 Stroop 测试,同时测量了额极(布罗德曼 10 区)的氧合情况。首先,在实验室环境中使用 Biopac 的 fNIRS 设备进行测试,几周后,在家庭环境中使用 Mendi 设备重复该测试。对数据的初步分析显示,两种设备的测量结果具有良好的一致性。在群体层面,相关性为 0.81。这些中期结果需要通过更可靠的分析和后续研究来证实,但 Mendi 设备有望在群体层面提供有效的大脑活动测量,并且该设备很可能用于实验室外的研究。
硅基涂层体系中应引起重视的基本研究问题是:(1)研究添加剂(如硼、锗)、水分和氧压对氧化物粘附性和粘度的影响,以便为有效减少和控制密封剂和水垢开裂提供必要的理解和数据;(2)为开发具有最佳热膨胀、应变耐受性和可塑性的双层和玻璃涂层进行裂纹管理,进行必要的分析和建模;(3)研究真实的功能梯度涂层,利用涂层的梯度和/或一系列层来控制裂纹的萌生,特别是裂纹的扩展;(4)在可能的情况下,包括测量、分析和实际建模施加应力对涂层系统的影响;(5)在二氧化硅作为离子导体的较高温度下,电解抑制通过二氧化硅水垢的传输。
大规模的基础设施系统对社会欢迎至关重要,其有效管理需要造成各种复杂性的战略前提和干预方法。我们的研究解决了涉及下水道资产的预后和健康管理(PHM)框架内的两个挑战:对跨严重水平的管道降解并制定有效的维护政策。我们采用多州降解模型(MSDM)来代表下水道管道中的随机降解过程,并使用深度加固学习(DRL)来制定维护策略。荷兰下水道网络的案例研究例证了我们的方法论。我们的发现证明了该模型在产生超过启发式方法的智能,节省成本的维护策略方面的效率。它根据管道的年龄来调整其管理策略,选择一种被动方法,用于新的管道,并过渡到较老的策略,以防止失败和降低成本。这项研究高光DRL在优化维护政策方面的潜力。未来的研究将通过合并部分可观察性,探索各种强化学习算法并将这种方法扩展到全面的基础架构管理,以改善模型。
背景:低级别浆液性卵巢和腹膜癌 (LGSC) 是一种罕见疾病,关于其临床和基因组学状况的数据很少。方法:对 1996 年至 2019 年期间在 MITO 中心确诊为 LGSC 的患者进行了回顾性分析。评估了治疗后的客观缓解率 (ORR)、无进展生存期 (PFS) 和总生存期 (OS)。此外,使用下一代测序 (NGS) FoundationOne CDX (Foundation Medicine®) 评估了 56 例患者的肿瘤分子谱。结果:共确定 128 名具有完整临床资料且病理确诊为 LGSC 的患者。首次和后续治疗的 ORR 分别为 23.7% 和 33.7%。 PFS 为 43.9 个月(95% CI:32.4 – 53.1),OS 为 105.4 个月(95% CI:82.7 – 未达到)。最常见的基因变异是:KRAS(n = 12,21%)、CDKN2A/B(n = 11,20%)、NRAS(n = 8,14%)、FANCA(n = 8,14%)、NF1(n = 7,13%)和 BRAF(n = 6,11%)。意外的是,发现了致病性 BRCA1(n = 2,4%)、BRCA2(n = 1,2%)和 PALB2(n = 1,2%)突变。结论:MITO 22 表明 LGSC 是一种异质性疾病,其临床行为对标准疗法有反应,其分子改变也不同。未来的前瞻性研究应根据肿瘤的生物学和分子特征测试治疗方法。临床试验注册:本研究在 ClinicalTrials.gov 上注册号为 NCT02408536。
备注:1。空缺,需求和成功/不成功的分配数据显示该课程类别,除非另有说明,否则本回合中的主列表中选择的课程类别。2。在不同的“选择课程”回合的不同学生可以使用同一门课程。一般指南检查该课程是否在特定的一轮中可用如下:•“选择课程”第1轮是针对计划要求,受限/直接次要要求和CELC英语要求的受保护回合。•“选择课程”第2轮开始包括针对大学级别要求和不受限制的选修要求选择课程。3。“空缺”列显示了当前一轮的选择课程分配时的配额(按学生的职业生涯)。它会受到变化的约束,例如在为应得的学生运行分配过程之前由管理员分配的课程。在处理选定课程(第3轮)并提交课程请求时,将合并课程课程的所有可用空缺。当课程课程达到其最大容量时,它将使用“ - ”更新。在这种情况下,不允许学生选择课程或提交上诉。4。“其他”列包括诸如课程已经分配的原因,正在取消课程或学生的计划状态不再活跃。5。请注意,大多数法律选修课程的总配额(在所有学术职业中)为50。第17页,共107页,如11-Jan-25
用于 Li–S 电池的富氧空位多壁碳纳米管上N、F 和 B Co 掺杂 CoFe 2 O 4âˆ' x的离子液相辅助合成。先进功能材料,2022,32,。