摘要。[目的]这项研究的目的是开发一种名为NOK的新型可穿戴肌电图,并将其可靠性和有效性与现有肌电图进行比较。[参与者和方法]研究症状是23名健康的大学生(7名男性和16名女性; 20.3±1.1岁[平均值±标准偏差];高度162.0±6.7 cm;体重58.4±10.1 kg,他们都给予了知情的书面同意。新开发的肌电图(NOK)具有不需要电极的橡胶皮肤接触表面,并允许在便携式个人计算机上获取多达10个肌肉波形的肌肉波形。在测量最大等距肘部伸展和屈曲之后,我们在肘关节屈曲和延伸期间检查了肌肉波形,并使用NOK和DELSYS ELEC-ELEC-tromographings和两种设备的结果进行了大约50%的最大自愿收缩。[结果]我们发现了两个设备的二头肌和三头肌之间的测量之间有显着的中等相关性。两种设备的测量结果也显示出强烈的测量可靠性。的系统误差和伸展,表明两种测量方法之间的一致性有限。[结论]尽管新设备的可重复性和可靠性也很高,但不适合分析详细的肌肉活动。但是,由于它可以测量多达10个肌肉活动的渠道,因此预计将来将在康复和运动领域中使用它。关键词:可穿戴肌电图,有效性,肌肉活动
摘要。生成模型允许创建高度现实的人造样品,从而在医学成像中开放了有希望的应用。在这项工作中,我们提出了一种基于多阶段编码器的方法,以将生成对抗网络(GAN)的发电机倒入高分子胸部X光片。这可以直接访问其隐式形成的潜在空间,使生成模型更容易被研究人员访问,并使其能够将生成技术应用于实际患者的图像。我们研究了此嵌入的各种应用程序,包括图像压缩,编码数据集中的分离,引导图像ma-nipulation以及创建程式化样品的创建。我们发现,这种类型的GAN反转是胸部X光片建模领域的一个有希望的研究方向,并为将现实的X射线样品合成与放射学图像分析结合起来开辟了新的方法。
科学背景。离散的几何形状和组合优化具有丰富的相互作用。对于一般输入而言,许多优化问题是NP的,但对于受限但重要的输入类别,例如,对于某些图和矩阵类,或几何结构起作用时,变得有效/近似于近似。图形及其图纸是数学和计算机科学以及该项目中研究的核心对象。我们考虑将顶点表示为平面点的图形的图纸,边缘用简单的曲线(或线段,直线图中的线段)表示连接点的图形。在简单的图纸中,任何两条曲线最多在一个共同点中相交。在图表及其图纸上的优化问题的背景下,完整的图构成了一个特别有趣且具有挑战性的研究对象:例如,交叉数问题(至少有图形的任何图形至少有多少个交叉点)对于一般图表[4]。但是,完整图的特殊情况不太可能在计算上很难(赋予著名的Harary-Hill猜想[1,6])。同样,C颜色的交叉数问题(发现最小的k,因此给定图形图的边缘可以以c颜色为c颜色,以使单色交叉数的数量最多为k)是已经用于C = 2的通用图[8],而完整图的绘图的复杂性状态为C = 2 [8]。完整图的少数已知硬度结果之一是完整图K n的给定简单绘制是否包含≥k边缘的平面亚绘制[3]。K N的直线图的相应问题很容易,因为每个最大平面亚绘制都是三角剖分,也是最大的。对简单图纸及其上的问题的研究与相交图密切相关,因为图形的每个(简单)绘图D诱导了相交图。因此,识别此类图的结构特性是迈向改进优化算法的有希望的步骤。
摘要我们提供了开源工具,用于3D分析人类大脑的剖面图片的照片,这些切片是在脑库中常规获取的,但很少用于定量分析。我们的工具可以:(i)3D从照片中重建一个音量,并选择地是表面扫描; (ii)每个半球的11个大脑区域产生高分辨率的3D分割(总共22个),与切片厚度无关。我们的工具可以用作离体磁共振成像(MRI)的替代品,该成像需要访问MRI扫描仪,离体扫描专业知识和相当大的财务资源。我们测试了来自两个NIH阿尔茨海默氏病研究中心的合成和真实数据的工具。结果表明,我们的方法可以得出与MRI高度相关的准确的3D重建,分割和体积测量值。我们的方法还检测到验尸确认阿尔茨海默氏病病例和对照之间的预期差异。这些工具可在我们的广泛神经成像套件“ freesurfer”(https://surfer.nmr.mgh.harvard.edu/fswiki/phototools)中获得。
我们提出了一种差异量子本素(VQE)算法,用于在循环树二元性中有效地引导多链feynman图的因果表示,或等效地,在有线图中选择了acyclic配置。基于描述多核拓扑的邻接矩阵的循环hamiltonian,其不同的能级对应于循环的数量,而VQE则将其最小化以识别因果或无环构型。该算法已改编成选择多个退化的最小值,从而达到更高的检测率。详细讨论了与基于Grover的算法的性能比较。,VQE方法通常需要更少的量子和较短的电路来实施,尽管成功率较小。
在路由、网络分析、调度和规划等应用领域,有向图被广泛用作形式模型和核心数据结构,用于开发高效的算法解决方案。在这些领域,图通常会随时间而演变:例如,连接链路可能由于临时技术问题而失败,这意味着图的边缘在一段时间内无法遍历,必须遵循替代路径。在经典计算中,图既通过邻接矩阵/列表显式实现,又以有序二元决策图符号化实现。此外,还开发了临时访问程序来处理动态演变的图。量子计算利用干扰和纠缠,为特定问题(例如数据库搜索和整数分解)提供了指数级加速。在量子框架中,一切都必须使用可逆运算符来表示和操作。当必须处理动态演变的有向图的遍历时,这带来了挑战。由于路径收敛,图遍历本质上不是可逆的。对于动态发展的图,路径的创建/销毁也会对可逆性产生影响。在本文中,我们提出了一种新颖的量子计算高级图表示,支持实际网络应用中典型的动态连接。我们的程序可以将任何多重图编码为一个酉矩阵。我们设计了在时间和空间方面最优的编码计算算法,并通过一些示例展示了该建议的有效性。我们描述了如何在恒定时间内对边/节点故障做出反应。此外,我们提出了两种利用这种编码执行量子随机游走的方法:有和没有投影仪。我们实现并测试了我们的编码,获得运行时间的理论界限并由经验结果证实,并提供有关算法在不同密度图上的行为的更多细节。
摘要:代谢网络可能是最具挑战性和最重要的生物网络之一。他们的研究提供了有关生物学途径的工作方式以及特定生物体对环境或治疗的鲁棒性的见解。在这里,我们提出了一个有针对边缘的顶点重量作为代表代谢网络的新框架的定向超图。这种基于超级图的表示捕获了代谢物和反应之间的高阶相互作用,以及反应和化学计量权重的方向性,从而保留了所有必需信息。在此框架内,我们提出了通信性和搜索信息作为指标,以量化有向超图的鲁棒性和复杂性。我们探讨了网络方向对这些度量的含义,并通过将它们应用于小型大肠杆菌核心模型来说明了一个实践示例。此外,我们比较了30种不同模型的代谢模型的鲁棒性和复杂性,并连接结构和生物学特性。我们的发现表明抗生素耐药性与高结构鲁棒性有关,而复杂性可以区分真核和原核生物。
一种新化合物的药物开发流程可能持续 10-20 年,耗资超过 100 亿美元。药物再利用提供了一种更省时省钱的替代方案。基于网络图表示的计算方法(由疾病节点及其相互作用的混合组成)最近产生了新的药物再利用假设,包括适用于 COVID-19 的候选药物。然而,这些相互作用组在设计上仍然是聚合的,并且通常缺乏疾病特异性。这种信息稀释可能会影响药物节点嵌入与特定疾病的相关性、由此产生的药物-疾病和药物-药物相似性得分,从而影响我们识别新靶点或药物协同作用的能力。为了解决这个问题,我们建议构建和学习疾病特异性超图,其中超边编码各种长度的生物途径。我们使用改进的 node2vec 算法来生成通路嵌入。我们评估了我们的超图为一种无法治愈但普遍存在的疾病——阿尔茨海默病 (AD) 寻找再利用靶标的能力,并将我们的排序建议与来自最先进的知识图谱——多尺度相互作用组的建议进行比较。使用我们的方法,我们成功地确定了 7 个有希望的 AD 再利用候选药物,这些候选药物被多尺度相互作用组评为不太可能的再利用靶标,但现有文献提供了支持证据。此外,我们的药物再定位建议附有解释,引出了合理的生物学途径。未来,我们计划将我们提出的方法扩展到 800 多种疾病,将单一疾病超图组合成多疾病超图,以解释具有风险因素的亚群或编码特定患者的合并症,以制定个性化的再利用建议。
摘要腹置空间是胸部X光片的一个棘手区域,在胸部X光片中,经常错过异常的密度。病变会产生晚期压力症状。早期检测和对逆行心态的适当评估可以帮助放射科医生在明显的临床体征和症状之前确定诊断。我们提出了10例患者的病例系列,额叶胸部放射线中偶然检测到的深层不透明度,并通过其他成像方式进一步评估,例如横向X光片,计算机断层扫描(CT)或磁共振成像(MRI)以建立诊断。最终诊断包括先天性疾病,例如食管复制囊肿和支气管囊肿;炎性疾病,如肝炎,肺脓肿和肺炎肺炎;主动脉动脉瘤等血管状况;诊断性疝等diaphragmatragication;以及罕见的肿瘤,例如心脏乳头状瘤,肺神经内分泌肿瘤和神经节瘤。还讨论了有助于诊断后心动过心的基本迹象。
图形结构的场景描述可以在生成模型中有效地使用,以控制生成的图像的组成。以前的方法基于图形卷积网络和对抗方法的组合,分别用于布局预测和图像生成。在这项工作中,我们展示了如何利用多头关注来编码图形信息,以及在潜在的图像生成中使用基于变压器的模型可以提高采样数据的质量,而无需在训练稳定性方面采用后续的对抗模型。所提出的方法,具体来说,完全基于用于将场景图编码为中间对象布局的变压器体系结构,并将这些布局解码为图像,通过矢量定量的变异自动编码器所学到的较低维空间。我们的方法在最新方法中显示出改进的图像质量,以及从同一场景图中的多代人之间的较高程度的多样性。我们在三个公共数据集上评估了我们的方法:视觉基因组,可可和CLEVR。我们在可可和视觉基因组上分别达到13.7和12.8的成立分数和52.3和60.3的FID。我们对我们的贡献进行消融研究,以评估每个组件的影响。代码可从https://github.com/perceivelab/trf-sg2im获得。