图 1 人工智能模型正确分类为胸腔积液的 X 光片示例。A、右侧位(kVp 80,mAs 6.5)和 B、腹背位(kVp 90,mAs 6.5)X 光片投影,显示一只单侧有轻微胸腔积液征兆的狗。侧位投影(箭头)上肺部前腹侧有囊泡图案。游离液体在心脏腹侧积聚,增加了纵隔脂肪的 X 光不透明度(箭头)。这只狗在手术中被确认有左前肺叶扭转和胸腔积液
1 华沙医科大学口腔医学院牙科预防学系,02-006 华沙,波兰 2 华沙医科大学口腔医学院牙科和颌面放射学系,02-091 华沙,波兰;piotr.regulski@wum.edu.pl 3 华沙医科大学口腔医学院综合牙科护理系,02-091 华沙,波兰;kbrus@wum.edu.pl 4 西里西亚医科大学喉科学系,40-027 卡托维兹,波兰 5 塞格德大学牙科学院牙周病学系,6720 塞格德,匈牙利;parkanyilaci@gmail.com 6 罗格斯新泽西州立大学修复牙科系,新泽西州纽瓦克 07103,美国; drganz@drganz.com 7 独立研究员,美国新泽西州李堡 07024 8 特拉维夫索拉斯基医学中心,耳鼻咽喉科、头颈及颌面外科系,萨克勒医学院,特拉维夫 6139001,以色列;mijiritsky@bezeqint.net 9 特拉维夫大学莫里斯和加布里埃拉·戈德施莱格牙科学院,特拉维夫 6997801,以色列 * 通讯地址:lzadrozny@wum.edu.pl (Ł.Z.);mrtczajkowska@gmail.com (MC)
图形表示是解决自然科学中复杂问题的强大概念,因为连接模式可以产生大量的突发现象。基于图形的方法已被证明在高度分支量子网络中的量子通信和量子搜索算法中特别有效。在这里,我们引入了一个以前未被发现的范例,通过利用具有定制双折射的复杂波导电路中光子对的空间和偏振自由度的混合作用,直接实验实现与三维网络相关的激发动力学。这个用于在复杂、高度连通的图形上进行多粒子量子行走的实验探索的试验台为开发费米子动力学在集成量子光子学中的应用潜力铺平了道路。
摘要 - 图形相似性或图形可区分性的问题通常在自然系统及其对图形网络的分析中产生。在许多域中,图形相似性用于图形分类,异常检测或识别区别相互作用模式。已经提出了几种有关如何解决此主题的方法,但是图比较仍然提出了许多挑战。最近,信息物理学已成为复杂网络作品的有前途的理论基础。在许多应用中,已经证明了Nat-Ural复合系统表现出可以通过通常在量子机械系统中应用的度量来描述和解释的特征。因此,识别网络相似性度量的自然起点是信息物理和一系列量子状态的距离。在这项工作中,我们报告了有关综合和现实世界数据集的实验,并将量子启发的度量与一系列最先进的图形和良好的图形区分方法进行比较。我们表明,量子启发的方法满足图形相似性的数学和直观要求,同时提供高解释性。
摘要让D为简单的Digraph(有向图),带有顶点s v(d)和弧集a(d),其中n = | v(d)| ,每个弧都是有序的一对不同的顶点。如果(v,u)∈A(d),则u被视为d中V的邻居。最初,我们将每个顶点指定为已填写或为空。然后,应用以下颜色更改规则(CCR):如果一个填充的顶点V具有一个空的邻居U,则U将被填写。如果V(d)中的所有顶点最终都在CCR的重复应用下填写,则初始集合称为零强迫集(ZFS);如果不是,那是失败的零强迫集(FZFS)。我们在Digraph上介绍了零强迫f(d),这是任何FZF的最大基数。零强制数z(d)是任何ZF的最小基数。我们表征具有f(d) 我们还用f(d)= n -1,f(d)= n -2和f(d)= 0表征挖掘,这导致了任何顶点是ZFS的挖掘物的表征。 最后,我们表明,对于任何整数n≥3和具有k我们还用f(d)= n -1,f(d)= n -2和f(d)= 0表征挖掘,这导致了任何顶点是ZFS的挖掘物的表征。最后,我们表明,对于任何整数n≥3和具有k
在复杂的网络中找到隐藏的层是现代科学中的一个重要且非平凡的问题。我们探索量子图的框架,以确定多层系统的隐藏部分是否存在,如果是这样,则其程度是多少,即那里有多少个未知层。假设唯一可用的信息是在网络的单层上波传播的时间演变,因此确实可以发现仅通过观察动力学而隐藏的东西。我们提供有关合成和现实世界网络的证据,表明波动力学的频谱可以以其他频率峰的形式表达不同的特征。这些峰表现出对参与传播的层数的依赖性,从而允许提取上述数量。我们表明,实际上,只要有足够的观察时间,人们就可以完全重建行范围标准化的邻接矩阵频谱。我们将我们的命题与用于多层系统目的的波数据包签名方法进行了比较与机器学习方法。
对称性对称性以及我们对能量和兰德指数变化的定义,我们需要适应我们的方法。特别是我们定义与内部和外部程度相关的内部和外部能量。为了描述我们使用的(1)中的相等性,我们所谓的遗传化技巧,将挖掘物的能量与两部分图的能量相关联。此外,该技术允许为定理6和9提供另一个证据。除了本介绍之外,该论文的组织如下。在第2节中,我们介绍了Nikiforov定义的Digraph的能量。我们还定义了顶点e +(v)的外能和顶点e-(v)的内能,并证明对于相邻的顶点e +(v i)e-(v j)≥1。在第3节中,我们证明了本文的主要结果,即(1)中的不平等现象及其相应的Randic指数和能量。第4节致力于冬宫化技巧。我们使用这种技术给出了本文主要定理的另一个证明,并描述了(1)中平等性充分填写的图。
训练图分类器能够区分健康的大脑和功能障碍的大脑,可以帮助识别与特定认知表型相关的子结构。然而,图形分类器的仅预测能力是神经科学家的兴趣,这些神经科学家有很多用于诊断特定精神疾病的工具。重要的是对模型的解释,因为它可以提供新颖的见解和新假设。在本文中,我们提出了反事实图作为对任何黑盒图形分类器进行局部事后解释的一种方法。给定图形和一个黑框,反事实是一个图形,虽然与原始图具有很高的结构相似性,但在其他类别中由黑框分类。我们提出并进行了反对反事实图搜索的几种策略。我们针对具有已知视觉反事实的白盒分类器的实验,表明我们的方法虽然启发式,但可以产生非常接近最佳的方法。最后,我们展示了如何使用反事实图来构建全局解释,从而正确捕获了不同黑盒分类器的行为并为神经科学家提供有趣的见解。