execepecte s ummary对一个世纪的科学询问的全面综述阐明了作弊草(Bromus tectorum)入侵的原因和后果,并评估了解决方案以恢复健康的本地生态系统。在1800年代介绍给北美,这一欧亚年度是由铁路,车辆和牲畜传播的,殖民地的土地被过度放牧和其他因素所困扰和退化。今天,数以百万计的英亩已转换为作弊的单一文化。数千万英亩的土地仍然处于入侵的高风险中。继续在西部广大地区进行扩张,这表明目前的牲畜放牧仍然负责备忘录的扩张和主导地位。作弊草是一位栖息地的通才,具有极高的生殖率,并且比本地草早发芽。它胜过本地植物的幼苗用于水和土壤养分,并改变土壤化学和植物植物的优势。牲畜践踏,放牧和表面障碍是通过消除天然的碎片草和生物土壤外壳来将健康的干旱生态系统转变为备用的草皮系统的关键生态转换,这些系统是对杂草的自然防御。现在,一个牲畜 - cheatgrass-fire循环在美国西部的许多公共土地上都占上风,使土地易受较大,更频繁的火灾。作弊草的入侵降解或消除了本地野生动植物的栖息地和牲畜范围。气候变化可能会改变作弊草的分布,并可能加剧入侵。恢复本地栖息地的解决方案仍然难以捉摸且昂贵。磁盘,有针对性的放牧,开处方的火灾,燃油破坏建筑风险恶化的作弊草侵害;非本地饲料物种的种植会产生自己的侵入性杂草侵袭;虽然除草剂,但天然寄生虫和本地植物的播种可能会在问题所需的区域尺度上失败。减少或消除牲畜放牧的结果足够大,但是完全恢复可能需要数十年。将本地牧场转换为作弊草显着降低了土壤碳,因此将作弊草侵染到本地植物组合中可能在缓解气候中起关键作用。我们建议从分配量表放牧的牲畜休息,直到本地物种取代作弊草。在有光侵扰的土地上,我们建议将放牧的牲畜放牧到促进本地物种繁荣和维持土壤生物的水平。简介
这项研究提供了有关海草生态系统,生物多样性和当地社区之间复杂关系的见解,从而阐明了海草草地在支持生态健康和人类福祉方面的价值。这项研究结果可能会为保护策略,决策和可持续资源管理工作提供信息。从历史上看,海草床在管理方面已被大大忽视,从而导致全球范围内的覆盖范围大幅减少。但是,人们对海草床和其他蓝色碳生态系统在缓解气候变化中的重要性越来越多。因此,某些国家,例如2021年的伯利兹,已将蓝色碳生态系统纳入其国家确定的贡献(NDC),因为它们承认其在气候缓解中的潜在意义(Grimm等,2023),
1 EXECUTIVE SUMMARY ..................................................................................................... vii 1.1 Background and Objectives .................................................................................... vii 1.2 Assessment design .................................................................................................. vii 1.3 Soil C org stocks and accumulation rates in Trang seagrass生态系统.....................................................................................................................................................................................................................................................................................................................
Orraa解决方案实验室:高质量的蓝色碳原理和指导环境,例如红树林,潮汐沼泽和海草草地,通过隔离和存储大量碳来减轻气候变化;作为防止风暴,洪水和侵蚀的障碍;清洁空气和水;并为鱼类,甲壳类动物和其他物种提供关键的栖息地。沿海蓝色碳生态系统的价值超过1900亿美元,用于碳固存和他们提供的其他生态系统服务。高质量的蓝色碳原理和准则提供了一种一致且易于理解的方法,可以指导公平,公平和可信的蓝色碳项目的开发和管理。At the UNFCCC's COP27 in Sharm El-Sheikh, after a year of collaboration, listening, and engagement with more than 70 leading organizations actively working on blue carbon projects and policy, the Ocean Risk and Resilience Action Alliance (ORRAA), Salesforce, the World Economic Forum (WEF) Friends of Ocean Action, The Nature Conservancy, Conservation International and Meridian Institute delivered the High-Quality Blue Carbon Principles and Guidance.自那以后,高质量的蓝色碳的原则得到了全球多个计划和计划的认可和倡导,这些计划和计划具有高质量优质的蓝色碳投资和项目的愿景。一年后,Orraa与成员,合作伙伴和其他关键蓝碳社区利益相关者主持了解决方案实验室。目标是更好地理解障碍并开发解决方案,以支持在蓝色碳项目中采用高质量原则和指导。解决方案实验室还提供了连接蓝色碳社区的机会,以及来自供应链的代表,包括开发商,社区代表,政府。政策制定者,买家和投资者。解决方案实验室是利益相关者谈论一些挑战和解决方案的平台,其中包括利益相关者之间更好的理解和共享语言。蓝色碳从业人员指南被确定为有助于促进此事的工具/机制。解决方案实验室总结解决方案实验室展示了6个故事和案例研究,这些故事体现了开发高质量蓝色碳项目所固有的挑战和机会。围绕着实施准则的关键障碍有积极参与(附件1 - Menti-metre结果),以及有关解决方案的讨论,如下表1所总结。讨论中出现的关键主题包括:
抽象的Zoysia Japonica(Z. Japonica)是一个暖季的多年生草皮,通常在美国东南部生长,因为其投入需求相对较低,并且对干旱,阴影和盐度的一般耐受性。改善冰冻耐受性对于Z.Japonica至关重要,因为它可以扩展北部边界,即该物种能够生长。为了加深我们对Z. Japonica冻结耐受性的分子基础的理解,使用转录组方法来识别涉及冷适应的基因。'Meyer',冻结耐受品种和“维多利亚”,冻结易感品种受到冷适应和非冷入适应处理,以确定差异表达基因(DEG)的数量。响应冷适应,总共上调了4,609度,在“ Meyer”中下调了3,605度,而在“ Victoria”中,3,758度上调了3,758度,3,516度下调。GO和KEGG富集分析显示了几种不同的途径和生物学过程,包括光合作用,跨膜转运和植物激素信号转导。将这些信息与先前关于蛋白质组学和QTL映射的研究相结合,几个候选基因被确定与不同研究(例如LEA,CIPK,POD,HSF,HSF,HSP,HSP,MPK,MPK,PSII和多个转录因子)的耐寒和冻结耐受性有关。这项研究中鉴定出的候选基因表明,可能成为冻结Z. japonica的未来选择工作的目标。
该药物会受到其他监测。这将允许快速识别新的安全信息。医疗保健专业人员被要求报告任何可疑的不良反应。有关如何报告不良反应的第4.8节。1。药用产品的名称Krazati 200 mg薄膜涂层片2。定性和定量组成,每个薄膜涂层的片剂包含200毫克Adagrasib。有关赋形剂的完整列表,请参见第6.1节。3。制药形式胶片涂层的片剂。白色至灰白色的椭圆形,薄膜涂层的平板电脑,约8 x 16毫米,一侧有风格化的“ M”,另一侧标有“ 200”。4。临床细节4.1治疗指示Krazati作为单一疗法,用于治疗成年患者,即至少一种先前的全身治疗后,具有KRAS G12C突变和疾病进展的晚期非小细胞肺癌(NSCLC)。4.2 krazati的生态学治疗方法应由抗癌药物使用的医生开始。必须使用经过验证的测试来确认KRAS G12C突变的存在,然后再开始使用Krazati进行治疗。posology建议的克拉萨蒂剂量为600毫克(三个200毫克片剂),每天两次。建议对Krazati进行治疗持续时间,直到疾病进展或不可接受的毒性为止。应告知患者延迟或错过的剂量患者,如果自预定给药时间以来少于4小时,则患者应正常服用剂量。如果错过了超过4个小时的剂量,则应跳过剂量,并且应在下一个预定剂量时恢复剂量。如果服用剂量后发生呕吐,则应建议患者不要服用额外的剂量。应按照规定服用下一个剂量。治疗期间的剂量调整建议的不良反应管理剂量降低水平在表1中概述了。
谷物是人类为谷物种植的一群草。是从这些谷物谷物中获得的大多数人。这些晶粒的产生是形成草的独特芽结构的分层生殖结构的发展的结果。由于是空间的复杂,草芽发育的配位受到基因和信号网络(包括关键的植物激素生长素)的紧密控制。激素操纵已被确定为提高谷物作物产量的潜在潜在方法,因此最终是全球粮食安全。最近将生长素研究的大量研究从模型植物转化为谷物农作物物种的工作揭示了生长素生物合成,运输和信号传导对草芽结构发展的贡献。本综述讨论了这个仍在培养的知识基础,并研究了生长素生物学的变化可能是关键草物种之间射击建筑差异的差异的可能性,或者可以支持未来的谷物作物的选择性繁殖。
Giz MacBlue项目世界渔业日每年在11月21日举行庆祝。年度活动认识到我们的渔业的重要性,无论是沿海还是海上。此外,这是恢复我们一些支持重要渔业的一些退化生态系统的呼吁。其中之一是海草。海草是一个重要的蓝色碳生态系统,可提供生态系统的商品和服务,例如碳存储,海岸线保护,粮食安全,旅游业收入和水质。这是一个高效的碳汇,储存了多达18%的世界海洋碳。根据联合国的说法,在国际自然保护的威胁性物种列表下,二十一种海草物种被归类为几乎受到威胁,脆弱和濒临灭绝的物种。此外,据估计,这一主要的海洋栖息地中有7%每年在全球范围内丧失。太平洋研究中的海草表明,太平洋海草草地至少覆盖1446.2 km2,其中有16种海草物种。但是,海草生态系统在保护立法和政策中被边缘化。根据当地海草专家的说法,斐济国立大学的Shalini Singh博士Seagrasses沿着除南极洲以外的每个大陆的海岸线形成了大型草地,并且估计价值为1514亿美元(FJD 346.54亿美元)。海草草地表现出相对较高的生物生产力,较高的养分回收率和通常高的生物量,这对沿海渔业具有直接和间接的重要性。在太平洋中,海草床是矮人和海龟的重要栖息地。他们为许多商业和娱乐性的鱼类提供托儿所和庇护所。因此,在粮食安全和沿海生计的背景下,它们非常重要。仅在斐济中,对海草的威胁包括不当处理固体废物,污水污染,珊瑚收获,前岸填海以及由于主要自然灾害外的农业和林业径流而导致的沿海地区的高淤积。在所罗门群岛和巴布亚新几内亚,当地威胁还包括农业活动,主要来自棕榈油种植园,与海草相关的资源过度开发以及破坏性的捕鱼实践。
在全球范围内,海草草地以惊人的速度丢失,在过去的30年中,英国损失了多达40%的海草覆盖范围。海草提供各种生态系统服务,因此有几项努力旨在恢复英国这些丢失的草地。迄今为止,已经有三种中心的海草修复方法:将天然存在的海草移植到新地点,将种子直接种植到海床上,并种植了耕种的海草原位,将其种植到海洋环境中。这些方法对于英国海草物种Zostera Mariana和Z. Noltei取得了不同的成功。海洋保护信托基金(Oceant Trust)正在开发一条修复管道,该管道将种子在室内水产养殖设施中种植,并将已建立的植物移植到环境中。苗圃种子可以达到高发芽的成功率,但是这种成功目前是很大的变化,室内设施中的植物健康也是如此。
Abreu,R。C.,Hoffmann,W。A.,Vasconcelos,H。L.,Pilon,N。A.,Rossatto,D。R.和Durigan,G。(2017)。 热带稀树草原中碳质量的生物多样性成本。 科学进步,3(8),E1701284。 https://doi.org/10.1126/sciadv.1701284 Adams,M。A. (2013)。 巨型狂欢,临界点和生态系统服务:在不确定的未来中管理森林和林地。 森林生态与管理,294,250–261。 Ansley,R。J.,Boutton,T。W.和Skjemstad,J。O. (2006)。 土壤有机汽车和黑色碳储存以及在温带混合草大草原的不同火势下的动态。 全球生物地球化学周期,20(3)。 https://doi.org/10.1029/2005G B002670 Archer,S.R。,Andersen,E.M.,Predick,K.I.,Schwinning,S. 木质植物侵占:原因和后果。 在D. D. Briske中(编辑 ),牧场系统:过程,管理和挑战(pp。 25–84)。 Springer。 Balesdent,J.,Girardin,C。和Mariotti,A。 (1993)。 在温带森林中与地点相关的13 c树叶和土壤有机物。 生态学,74(6),1713–1721。 Balesdent,J。和Mariotti,A。 (1996)。 使用13°C的自然丰度测量土壤有机化的周转。 在I. T. W. Boutton和S. I. Yamasaki(编辑) ),土壤的质谱法(pp。 83–111)。 Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J. (1986)。 Koedoe,29(1),39-44。Abreu,R。C.,Hoffmann,W。A.,Vasconcelos,H。L.,Pilon,N。A.,Rossatto,D。R.和Durigan,G。(2017)。热带稀树草原中碳质量的生物多样性成本。科学进步,3(8),E1701284。https://doi.org/10.1126/sciadv.1701284 Adams,M。A. (2013)。 巨型狂欢,临界点和生态系统服务:在不确定的未来中管理森林和林地。 森林生态与管理,294,250–261。 Ansley,R。J.,Boutton,T。W.和Skjemstad,J。O. (2006)。 土壤有机汽车和黑色碳储存以及在温带混合草大草原的不同火势下的动态。 全球生物地球化学周期,20(3)。 https://doi.org/10.1029/2005G B002670 Archer,S.R。,Andersen,E.M.,Predick,K.I.,Schwinning,S. 木质植物侵占:原因和后果。 在D. D. Briske中(编辑 ),牧场系统:过程,管理和挑战(pp。 25–84)。 Springer。 Balesdent,J.,Girardin,C。和Mariotti,A。 (1993)。 在温带森林中与地点相关的13 c树叶和土壤有机物。 生态学,74(6),1713–1721。 Balesdent,J。和Mariotti,A。 (1996)。 使用13°C的自然丰度测量土壤有机化的周转。 在I. T. W. Boutton和S. I. Yamasaki(编辑) ),土壤的质谱法(pp。 83–111)。 Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J. (1986)。 Koedoe,29(1),39-44。https://doi.org/10.1126/sciadv.1701284 Adams,M。A.(2013)。巨型狂欢,临界点和生态系统服务:在不确定的未来中管理森林和林地。森林生态与管理,294,250–261。Ansley,R。J.,Boutton,T。W.和Skjemstad,J。O.(2006)。土壤有机汽车和黑色碳储存以及在温带混合草大草原的不同火势下的动态。全球生物地球化学周期,20(3)。https://doi.org/10.1029/2005G B002670 Archer,S.R。,Andersen,E.M.,Predick,K.I.,Schwinning,S.木质植物侵占:原因和后果。在D. D. Briske中(编辑),牧场系统:过程,管理和挑战(pp。25–84)。Springer。 Balesdent,J.,Girardin,C。和Mariotti,A。 (1993)。 在温带森林中与地点相关的13 c树叶和土壤有机物。 生态学,74(6),1713–1721。 Balesdent,J。和Mariotti,A。 (1996)。 使用13°C的自然丰度测量土壤有机化的周转。 在I. T. W. Boutton和S. I. Yamasaki(编辑) ),土壤的质谱法(pp。 83–111)。 Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J. (1986)。 Koedoe,29(1),39-44。Springer。Balesdent,J.,Girardin,C。和Mariotti,A。(1993)。在温带森林中与地点相关的13 c树叶和土壤有机物。生态学,74(6),1713–1721。Balesdent,J。和Mariotti,A。(1996)。使用13°C的自然丰度测量土壤有机化的周转。在I. T. W. Boutton和S. I. Yamasaki(编辑),土壤的质谱法(pp。83–111)。 Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J. (1986)。 Koedoe,29(1),39-44。83–111)。Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J. (1986)。 Koedoe,29(1),39-44。Marcel Dekker Inc. Barton,J.M.,Bristow,J.W。,&Venter,F。J.(1986)。Koedoe,29(1),39-44。摘要克鲁格国家公园的前寒武纪花岗岩岩石。https://doi.org/10.4102/koedoe.v29i1.518 Bastin,J.-F.,Finegold,Y.,Garcia,C.,Mollicone,D.,Rezende,Rezende,M.,Routh,M.全球树的重新修复潜力。Science,365(6448),76-79。Bates,D.,Mächler,M.,Bolker,B。,&Walker,S。(2015)。 使用LME4拟合线性混合效应模型。 统计软件杂志,67(1),1-48。 Biggs,R.,Biggs,H。C.,Dunne,T。T.,Govender,N。和Potgieter,A。L. F.(2003)。 在克鲁格国家公园(Kruger National Park)中的实验烧伤图试验:历史,实验设计和数据分析的建议。 Koedoe,46(1),1-15。 Bird,M。I.,Veenendaal,E。M.,Moyo,C.,Lloyd,J。,&Frost,P。(2000)。 火灾和土壤质地对亚人类稀树草原(Matopos,Zimbabwe)中土壤碳的影响。 Geoderma,94(1),71–90。 Blaser,W。J.,Shanungu,G。K.,Edwards,P。J.和Olde Venterink,H。(2014)。 木质侵占减少了养分限制并促进土壤碳螯合。 生态与进化,4(8),1423–1438。Bates,D.,Mächler,M.,Bolker,B。,&Walker,S。(2015)。使用LME4拟合线性混合效应模型。统计软件杂志,67(1),1-48。Biggs,R.,Biggs,H。C.,Dunne,T。T.,Govender,N。和Potgieter,A。L. F.(2003)。在克鲁格国家公园(Kruger National Park)中的实验烧伤图试验:历史,实验设计和数据分析的建议。Koedoe,46(1),1-15。Bird,M。I.,Veenendaal,E。M.,Moyo,C.,Lloyd,J。,&Frost,P。(2000)。 火灾和土壤质地对亚人类稀树草原(Matopos,Zimbabwe)中土壤碳的影响。 Geoderma,94(1),71–90。 Blaser,W。J.,Shanungu,G。K.,Edwards,P。J.和Olde Venterink,H。(2014)。 木质侵占减少了养分限制并促进土壤碳螯合。 生态与进化,4(8),1423–1438。Bird,M。I.,Veenendaal,E。M.,Moyo,C.,Lloyd,J。,&Frost,P。(2000)。火灾和土壤质地对亚人类稀树草原(Matopos,Zimbabwe)中土壤碳的影响。Geoderma,94(1),71–90。Blaser,W。J.,Shanungu,G。K.,Edwards,P。J.和Olde Venterink,H。(2014)。木质侵占减少了养分限制并促进土壤碳螯合。生态与进化,4(8),1423–1438。