智力残疾,癫痫,赫希斯普朗氏病和各种先天性畸形(Garavelli and Mainardi,2007年)。此外,Zeb2的过表达与不同形式的癌症的进展有关(Fardi等,2019)。虽然已经对Zeb2蛋白的功能进行了广泛的研究,但目前缺乏可用的Zeb2缺乏的人类细胞模型,无法在胚胎发育过程中进一步删除Zeb2依赖性调节网络,并且可以取消抗癌药物的发展。为此,我们使用CRISPR/CAS9介导的编辑系统生成了人类IPSC线,耗尽了Zeb2蛋白(表1)。我们分别应用了两个靶向Zeb2外显子5和外显子6的GRNA(图1 a),在父母IPSC线上Kicri002a(表1;(Uhlin等,2017)。通过LiPofection将包含两个GRNA的构建体引入IPSC系,并通过荧光激活的细胞分选(FACS)选择转染的细胞以表达绿色荧光蛋白。单细胞克隆在LN521上扩展,并通过基因组DNA上的Sanger测序分析基因编辑。分析显示了具有纯合790 bp缺失的克隆线kicri002a-4,跨越了内含子5和外显子5和6的一部分(chr2:g.144,404,077 - 144,404,404,404,867del;1 a;补充。图1 A-B)。 外显子5和外显子6的其余部分被融合,预测氨基酸194上的截短的Zeb2 mRNA,其截短的Zeb2 mRNA(PTC)(P.THR188888888888888888888888;图1 A-B)。外显子5和外显子6的其余部分被融合,预测氨基酸194上的截短的Zeb2 mRNA,其截短的Zeb2 mRNA(PTC)(P.THR188888888888888888888888;图1 a)。与136PTC位于编码N末端锌指(NZF)域的区域以及更C末端的R-SMAD结合域(SBD),CTBP相互作用结构域(CID)(CID)和C-末端的c-terminal Zinc Zinc Finger(CZF(CZF)和Homeododomain(例如Domains)(epifa)(epifa)。
考虑到基因组编辑这一新型精准育种工具在解决农业长期存在的问题方面的潜在应用,培训研究人员如何在研究项目中有效部署基因组编辑极其重要。院士们也需要接触基因组编辑工具,以便为学生和年轻的研究学者授课。这个为期 10 天的培训计划涵盖基因组编辑的基础知识和细节、gRNA 设计和合成的实践经验、CRISPR/Cas 构建体的开发、将 gRNA 递送到植物细胞中、使用各种方法检测编辑的品系以及基因组编辑的生物安全监管方面。随着印度政府出台基因组编辑植物安全评估指南,印度的基因组编辑研究预计将在未来几年以更快的速度加速发展。
带有单细胞读数的汇总CRISPR屏幕(例如wisturb-seq [1])已成为一种可扩展,灵活和强大的技术,可将遗传扰动连接到分子表型,其应用从基本分子生物学到医学遗传学和癌症研究。[2]在此类筛选中,通过CRISPR指南RNA(GRNA)将遗传扰动的库转染到一个细胞群中,然后进行单细胞测序,以识别出存在的扰动并测量每个细胞的富分子表型。扰动可以靶向基因[1]或非编码调节元件,[3,4,5]抑制[1]或激活[6]这些目标;分子读数可以包括基因表达,[1]蛋白表达,[7,8,9]或表观遗传性含量(如染色质访问性)。[10]通常,在低多重感染(MOI)下引入扰动,每个细胞一个扰动。在预期扰动的情况下
基于成簇的规律间隔短回文重复序列 (CRISPR) 的基因组编辑 (GED) 技术为理解基因和改进医疗方法开启了激动人心的可能性。另一方面,人工智能 (AI) 有助于基因组编辑在治疗镰状细胞性贫血或地中海贫血等各种疾病时实现更高的精度、效率和可负担性。AI 模型已用于设计用于 CRISPR-Cas 系统的向导 RNA (gRNA)。DeepCRISPR、CRISTA 和 DeepHF 等工具能够预测特定靶序列的最佳向导 RNA (gRNA)。这些预测考虑了多种因素,包括基因组背景、Cas 蛋白类型、所需突变类型、在靶/脱靶分数、潜在的脱靶位点以及基因组编辑对基因功能和细胞表型的潜在影响。这些模型有助于优化不同的基因组编辑技术,例如基础编辑、主要编辑和表观基因组编辑,这些先进技术无需依赖同源性定向修复途径或供体 DNA 模板即可对 DNA 序列引入精确且可编程的改变。此外,人工智能与基因组编辑和精准医疗相结合,可以根据基因图谱实现个性化治疗。人工智能通过分析患者的基因组数据来识别与癌症、糖尿病、阿尔茨海默氏症等不同疾病相关的突变、变异和生物标志物。然而,仍存在一些挑战,包括高成本、脱靶编辑、合适的 CRISPR 货物运送方法、提高编辑效率以及确保临床应用的安全性。本综述探讨了人工智能对改进基于 CRISPR 的基因组编辑技术的贡献并解决了现有的挑战。它还讨论了人工智能驱动的基于 CRISPR 的基因组编辑技术未来研究的潜在领域。人工智能与基因组编辑的融合为遗传学、生物医药和医疗保健开辟了新的可能性,对人类健康具有重要意义。
马铃薯 ( Solanum tuberosum ) 是一种高度多样化的四倍体作物。优良品种杂合性极强,品种内和品种间短片段多态性 (indel) 和单核苷酸多态性 (SNP) 的发生率很高,在 CRISPR/Cas 基因编辑策略和设计中必须考虑这些因素才能获得成功的基因编辑。在本研究中,对马铃薯品种 Saturna 和 Wotan 中葡聚糖水双激酶 (GWD)1 和抗霜霉病 6 (DMR6-1) 基因分别进行深入测序,结果显示与杂合二倍体 RH 基因组序列相比,四倍体与二倍体相比,存在 indel 和 1.3 – 2.8 的高 SNP 发生率。这使向导 RNA (gRNA) 和诊断性 PCR 设计变得复杂。细胞库(原生质体)水平的高编辑效率对于实现四倍体中的完全等位基因敲除以及减少下游繁琐而精细的植株再生至关重要。在这里,CRISPR/Cas 核糖核蛋白颗粒 (RNP) 通过聚乙二醇 (PEG) 介导的转化瞬时递送到原生质体中。对于 GWD1 和 DMR6-1 中的每一个,设计了 6 – 10 个 gRNA 来靶向包含两个基因的 5 ' 和 3 ' 端的区域。与包括多种生物体的其他研究类似,单个 RNP/gRNA 的编辑效率差异很大,并且一些产生了特定的插入/缺失模式。尽管与靶向 3′ 端相比,靶向 GWD1 5′ 端的 RNP 产生的编辑效率明显更高,但 DMR6-1 5′ 端和 3′ 端的编辑效率似乎有些相似。当仅靶向 GWD1 基因的 3′ 端时,同时用两个 RNP 靶向 5′ 端或 3′ 端(多路复用)对总体编辑产生了明显的正协同效应。与单个 RNP/gRNA 转化中获得的编辑效率相比,位于不同染色体上的两个基因的多路复用对单个 RNP/gRNA 编辑效率没有影响或略有负面影响。这些初步发现可能会引发更大规模的研究,以促进和优化植物的精准育种。
作物。对 87 种芒属植物基因型的初步筛选确定了胚性愈伤组织形成和再生的显著差异,而另一子集则显示出通过农杆菌或基因枪转化的能力差异——所有这些因素都可能影响基因编辑效率。针对五种基因型开发了优化程序,其中包括一种 Msi (2x)、两种 Msa (2x 和 4x) 和一种 Mxg (3x)。设计了一种多步骤筛选方法来设计能够成功靶向基因同源物的 gRNA,有利于靶向古异源多倍体芒属植物中的基因。在玉米中靶向以通过 CRISPR/Cas9 产生突变体的视觉标记基因 lw1 [36, 37, 38] 被选为芒属植物的靶向基因。编辑后的 lw1 中的叶子表型(淡绿色/黄色、条纹、白色)是一个引人注目的视觉标记
摘要:基于成簇的规律间隔短回文重复序列 (CRISPR) 的基因组编辑技术彻底改变了生物学、生物技术和医学,并促进了新治疗方式的发展。然而,CRISPR 技术的安全使用仍然存在一些障碍,例如意外的脱靶 DNA 切割。小分子是解决这些问题的重要资源,因为它们具有简便的递送和快速的作用,可以实现对 CRISPR 系统的时间控制。在这里,我们全面概述了可以精确调节 CRISPR 相关 (Cas) 核酸酶和引导 RNA (gRNA) 的小分子。我们还讨论了新兴基因组编辑器(例如碱基编辑器)和抗 CRISPR 蛋白的小分子控制。这些分子可用于精确研究生物系统和开发更安全的治疗方式。
烟草变换。 div>生成转基因线T0。 div>该试验的烟草线对象是由K326商业品种的烟草植物的CRISPR/CAS9技术产生的。 div>为此,由烟草植物的农杆菌根源介导的,具有相应的转化载体,其中包含DSRED和NPTII蛋白的转录单位(选择标记物)(选择标记),CAS9蛋白的转录单位,以及用于辅助辅助的转录单元的转录单位,以辅助构图。 div>
摘要 背景 卵巢癌 (OvCa) 患者 T 细胞浸润升高与生存率提高之间的相关性表明内源性肿瘤浸润淋巴细胞 (TIL) 具有一定程度的抗肿瘤活性,可用于 OvCa 免疫治疗。我们之前优化了一种体外 OvCa TIL 扩增用于过继细胞疗法的方案,该方案目前正在我们机构的临床试验中进行测试 (NCT03610490)。在此成功的基础上,我们开始对 OvCa TIL 进行基因改造,以克服肿瘤微环境中存在的关键免疫抑制因素。在这里,我们介绍了在患者来源的 OvCa TIL 中 CRISPR/Cas9 介导的 TGF-β 受体 2 (TGFBR2) 敲除的临床前优化。方法 从四名患者手术切除的肿瘤样本中生成 OvCa TIL,并进行 CRISPR/Cas9 介导的 TGFBR2 敲除,然后进行快速扩增方案。全面评估了 TGFBR2 定向 gRNA 的 TGFBR2 敲除效率和脱靶活性。此外,还测定了 TGFBR2 敲除对 TIL 扩增、功能和下游信号传导的影响。结果在四个独立的 OvCa TIL 样本中测试的 5 个 gRNA 实现了从 59±6% 到 100%±0% 的 TGFBR2 敲除效率。TGFBR2 敲除的 TIL 对免疫抑制 TGF-β 信号传导具有抗性,表现为缺乏 SMAD 磷酸化、缺乏对 TGF-β 刺激的整体转录变化、在有和没有 TGF-β 的情况下促炎细胞因子的分泌同样强烈、并且在存在 TGF-β 的情况下细胞毒性增强。CRISPR 修饰本身不会改变 OvCa TIL 的体外扩增效率、免疫表型或 TCR 克隆多样性。对于临床转化而言,重要的是,对 CRISPR 脱靶效应的全面分析表明,我们前两个靶向 TGFBR2 的 gRNA 没有脱靶活性的证据。结论 CRISPR/Cas9 介导的基因敲除在患者来源的 OvCa TIL 中是可行且有效的,可使用临床可扩展的方法。我们实现了高效且特异性的 TGFBR2 敲除,产生了一种扩增的 OvCa TIL 产品,该产品对免疫抑制剂具有抗性
CRISPR-Cas 基因编辑的成功在很大程度上依赖于 gRNA 设计的效率和 gRNA-Cas 复合物与目标 DNA 序列的结合亲和力。我们的一位客户在为其应用选择最佳 gRNA 设计时面临挑战。初始 gRNA 候选物是使用计算机工具设计的,尽管被设计为针对相同的基因组区域,但表现出不一致的结合和编辑效率。为了解决这个问题,我们使用了 CRISPR Analytics 平台的 DNA 结合检测来评估与 Cas9 复合的几种 gRNA 候选物与目标 DNA 扩增子的结合亲和力。该检测包括阳性对照 gRNA 和混乱的阴性对照以供比较。结果显示,gRNA 候选物之间的目标 DNA 结合亲和力存在显著差异,其中两种 gRNA(5 和 6)表现出优于其他 gRNA 的结合(图 1)。
