凹坑表面技术旨在通过涡流强化通道中的传热,同时保持水力损失的适度增长,该技术在热能工程中有着广泛的应用[1,2]。微电子领域对此也产生了一定的兴趣[3-5],而关于普朗特数对层流传热强化影响的研究发表得就更少了。具体来说,在综述[2]中提到了[6,7]项研究,其中讨论了变压器油在加热壁面上具有单排球形和椭圆形凹坑的微通道中的流动。研究发现,在一个加热到 30 ◦ C 的九段微通道(宽度为 2,高度为 0.5,以通道高度为单位)的壁上,在低速(雷诺数 Re = 308)变压器油流动的情况下,定位具有中等深度(0.2)和螺距为 1.5 的球形凹坑,可以促进涡流强化传热,并且与光滑通道的情况相比,该壁面的传热增加了约 2.5 倍,水力损失减少了 7%。与光滑通道的情况相比,具有相同斑点面积(宽度为 0.55,长度为 1.5,以底部凹坑斑点直径为单位)和相同深度的椭圆形凹坑可以使传热进一步增强 3.4 倍(即,总共增强了 8.5 倍),水力损失减少 2.1%。 [8] 中发现了具有稀疏单排倾斜槽的通道稳定段中层流气流的局部加速。形成剪切流中的最大纵向速度几乎是平面平行通道中最大流速的 1.5 倍。后来确定,热效率由冲洗通道上平均的相对总努塞尔特数指定
激光表面结构是一种有效的技术,用于在统一接近或低于统一的铜表面具有二级电子产量(SEY)值。然而,最小化SEY的属性,例如中度深凹槽和重新沉积的纳米颗粒,可能导致不良后果,包括增加射频表面电阻。这项研究系统地检查了有关旨在消除重置吸附的颗粒的不同清洁程序的数据。连续清洁步骤后迭代使用各种分析技术,从而提供了对不断发展的表面特征的见解。收集的实验结果确定了微沟,凹槽方向以及相关颗粒对次级电子产率和表面电阻的明显影响。在凹槽中保持高颗粒物覆盖范围的同时露出波峰会导致SEY值和表面电阻的降低,这表明凹槽的尖端对表面电流密度的影响比凹槽深度更为重要。同时,凹槽中的纳米颗粒对SEY值具有比表面暴露的尖端更重要的影响。
a)当根据表F3V1A/H2V1A确定所有风险因素得分的总和时,风险评分为20或更少; b)不承受最终的极限状态风压超过2.5kpa; c)仅包括符合2047的窗口。这被认为包括4055风分类N1W,N2W,N3W,N4W,N4W,C1W和C2W,不包括4055 Wind Clastications,N5W,N6W,N6W,C3W和C4W。超过2.5kpa最终极限状态风压力且不超过5.77kpa终极极限状态风压的防水应用超出了该认证的范围,并且遵守对天气的范围,受监管机构的特定地点设计和批准。参考A6。3。对于9级建筑物2级建筑物,Duragroove™墙壁覆层系统适用于固定在木螺柱框架上时仅使用C型耐火结构。4。符合FRL的依赖性取决于根据A3中概述的Innova Duragroove™壁盖系统技术手册所构建的系统。与评估系统的任何偏差都不构成此一致性证书的一部分。a)对于木材和钢制框架应用,如果将duragroove™壁板系统用作墙壁系统的一部分,则壁系统将达到FRL 60/60/60,而Duragroove™壁覆层则与1层16mm GTEK™Fired fires fires fires fires the Electressiide一起安装。在内侧,将1层GTEK™石膏板安装为内壁衬里。5。7。8。参考FRL系统的A3。b) For timber and steel framing applications, if the Duragroove™ Wall Cladding System is used as part of a wall system, the wall system achieves an FRL 90/90/90 when Duragroove™ Wall Cladding is installed in conjunction with 2 layers of 16mm GTEK™ Fire and Wet Area Plasterboard on the external fireside where joints in the second layer are to be staggered relative to joints in the第一层或确保石膏板第一层中的接头被第二张纸绑住。在内侧,将安装1层10mm GTEK™石膏板作为内壁衬里。与1级和10级建筑物和结构有关的外墙的施工方法必须遵守ABCB住房规定的第9.2部分。结构认证仅限于覆层,不包括子结构。Duragroove™墙壁覆层系统必须根据A3节中的适当跨度表固定在结构上足够的外部壁框架上。结构支持成员是根据项目的需求分别设计和设计的。在所有情况下,都要求墙壁覆层系统合并; a)根据AS 1684或AS 1720.1建造的木材框架;或b)根据纳什(Nash)标准的住宅和低层钢框架,第1部分:设计标准;或c)符合上述最低要求和其他标准的框架,以及适用的澳大利亚建筑守则6。9。10。在所有装置中,面板的下侧与下面的地面水平的底面之间的最小间隙必须符合ABCB住房规定第7.5.7部分中的规格。Duragrove™壁盖系统适用于在指定的丛林大火易于面积的建筑物上,需要在AS 3959:2018(由州和领土变化)(由州和领土变化)建造时,直至BAL – FZ,直至BAL – FZ,均为BAL – FZ(由A3中的A3中的1级建筑物建筑物,或一堂1级建筑物建筑物,或一堂1级建筑物,或一堂1级建筑物,或一堂1级建筑物,或一台1级建筑。符合BAL Low-FZ的依从性仅限于实现30/30/30的FRL的测试系统。建筑设计师有责任确保按照AS 3959-2018实现合规性。在新南威尔士州,Duragroove™墙壁覆层系统适用于指定的灌木丛易受的区域中的建筑物:a)用于1级建筑物,2级建筑物,3级建筑物,建筑物的4级建筑物或10A级建筑物或10A级建筑物,当时是按照AS 3959:2018的规定,除了通过计划为Bush-40 bush-40,该建筑物是根据3959:2018进行的。b)对于9级建筑物,这是一个特殊的防火目的,位于灌木丛攻击水平(BAL)的区域中,不超过BAL – 122.5,根据AS 3959:2018确定。使用认证的产品/系统的使用受这些限制和条件的约束,必须与下面的认证范围一起阅读。
很快就出现了。In this context, inspired by the growing interest in quadruplex nucleic acid structures and their myriad puta- tive biological functions, the Thomas group made the first report on a “ quadruplex light-switch ” , identifying a dinuclear complex, [{Ru(phen) 2 } 2 (tpphz)] 4+ (tpphz = tetrapyrido[3,2- a :2 ′ ,3 ′ - c:3'',2“ - h:2''',3''' - j]苯胺,将螺纹伸入四鲁 - plex回路中,导致“切换”状态,比其非相互缩放的养殖型结合; 21效应也可以用于在双链体和四链体结构之间差异。22在接下来的几年中,已经报道了有关RU II复合物的大量研究及其与四链体和其他相关结构的相互作用。23 - 27
1 伦敦大学伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国2号2光电研究中心,南安普敦大学,南安普敦大学,SO17 1BJ,英国3英国3,英国3号电子工程系,贝斯校区,Swansea,Sawansea,Savosea,Sa1 and sa1 8ne of Interver,sa1 and Introl,Sa1 8ne of Key,Key,Key of Key of Key kekij Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China 5 SuperSTEM, SciTech Daresbury Science and Innovation Campus, Block J, Keckwick Lane, Daresbury WA4 4AD, United Kingdom 6 York NanoCentre & Department of Physics, University of York, York YO10 5DD, United Kingdom 7 School of Chemical and Process Engineering and School of Physics and Astronomy,利兹大学,利兹LS2 9JT,英国伦敦大学伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国2号2光电研究中心,南安普敦大学,南安普敦大学,SO17 1BJ,英国3英国3,英国3号电子工程系,贝斯校区,Swansea,Sawansea,Savosea,Sa1 and sa1 8ne of Interver,sa1 and Introl,Sa1 8ne of Key,Key,Key of Key of Key kekij Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China 5 SuperSTEM, SciTech Daresbury Science and Innovation Campus, Block J, Keckwick Lane, Daresbury WA4 4AD, United Kingdom 6 York NanoCentre & Department of Physics, University of York, York YO10 5DD, United Kingdom 7 School of Chemical and Process Engineering and School of Physics and Astronomy,利兹大学,利兹LS2 9JT,英国伦敦大学伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国2号2光电研究中心,南安普敦大学,南安普敦大学,SO17 1BJ,英国3英国3,英国3号电子工程系,贝斯校区,Swansea,Sawansea,Savosea,Sa1 and sa1 8ne of Interver,sa1 and Introl,Sa1 8ne of Key,Key,Key of Key of Key kekij Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China 5 SuperSTEM, SciTech Daresbury Science and Innovation Campus, Block J, Keckwick Lane, Daresbury WA4 4AD, United Kingdom 6 York NanoCentre & Department of Physics, University of York, York YO10 5DD, United Kingdom 7 School of Chemical and Process Engineering and School of Physics and Astronomy,利兹大学,利兹LS2 9JT,英国伦敦大学伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国2号2光电研究中心,南安普敦大学,南安普敦大学,SO17 1BJ,英国3英国3,英国3号电子工程系,贝斯校区,Swansea,Sawansea,Savosea,Sa1 and sa1 8ne of Interver,sa1 and Introl,Sa1 8ne of Key,Key,Key of Key of Key kekij Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China 5 SuperSTEM, SciTech Daresbury Science and Innovation Campus, Block J, Keckwick Lane, Daresbury WA4 4AD, United Kingdom 6 York NanoCentre & Department of Physics, University of York, York YO10 5DD, United Kingdom 7 School of Chemical and Process Engineering and School of Physics and Astronomy,利兹大学,利兹LS2 9JT,英国伦敦大学伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国2号2光电研究中心,南安普敦大学,南安普敦大学,SO17 1BJ,英国3英国3,英国3号电子工程系,贝斯校区,Swansea,Sawansea,Savosea,Sa1 and sa1 8ne of Interver,sa1 and Introl,Sa1 8ne of Key,Key,Key of Key of Key kekij Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China 5 SuperSTEM, SciTech Daresbury Science and Innovation Campus, Block J, Keckwick Lane, Daresbury WA4 4AD, United Kingdom 6 York NanoCentre & Department of Physics, University of York, York YO10 5DD, United Kingdom 7 School of Chemical and Process Engineering and School of Physics and Astronomy,利兹大学,利兹LS2 9JT,英国
1 伦敦大学伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国2号2光电研究中心,南安普敦大学,南安普敦大学,SO17 1BJ,英国3英国3,英国3号电子工程系,贝斯校区,Swansea,Sawansea,Savosea,Sa1 and sa1 8ne of Interver,sa1 and Introl,Sa1 8ne of Key,Key,Key of Key of Key kekij Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China 5 SuperSTEM, SciTech Daresbury Science and Innovation Campus, Block J, Keckwick Lane, Daresbury WA4 4AD, United Kingdom 6 York NanoCentre & Department of Physics, University of York, York YO10 5DD, United Kingdom 7 School of Chemical and Process Engineering and School of Physics and Astronomy,利兹大学,利兹LS2 9JT,英国伦敦大学伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国2号2光电研究中心,南安普敦大学,南安普敦大学,SO17 1BJ,英国3英国3,英国3号电子工程系,贝斯校区,Swansea,Sawansea,Savosea,Sa1 and sa1 8ne of Interver,sa1 and Introl,Sa1 8ne of Key,Key,Key of Key of Key kekij Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China 5 SuperSTEM, SciTech Daresbury Science and Innovation Campus, Block J, Keckwick Lane, Daresbury WA4 4AD, United Kingdom 6 York NanoCentre & Department of Physics, University of York, York YO10 5DD, United Kingdom 7 School of Chemical and Process Engineering and School of Physics and Astronomy,利兹大学,利兹LS2 9JT,英国伦敦大学伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国2号2光电研究中心,南安普敦大学,南安普敦大学,SO17 1BJ,英国3英国3,英国3号电子工程系,贝斯校区,Swansea,Sawansea,Savosea,Sa1 and sa1 8ne of Interver,sa1 and Introl,Sa1 8ne of Key,Key,Key of Key of Key kekij Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China 5 SuperSTEM, SciTech Daresbury Science and Innovation Campus, Block J, Keckwick Lane, Daresbury WA4 4AD, United Kingdom 6 York NanoCentre & Department of Physics, University of York, York YO10 5DD, United Kingdom 7 School of Chemical and Process Engineering and School of Physics and Astronomy,利兹大学,利兹LS2 9JT,英国伦敦大学伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国2号2光电研究中心,南安普敦大学,南安普敦大学,SO17 1BJ,英国3英国3,英国3号电子工程系,贝斯校区,Swansea,Sawansea,Savosea,Sa1 and sa1 8ne of Interver,sa1 and Introl,Sa1 8ne of Key,Key,Key of Key of Key kekij Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China 5 SuperSTEM, SciTech Daresbury Science and Innovation Campus, Block J, Keckwick Lane, Daresbury WA4 4AD, United Kingdom 6 York NanoCentre & Department of Physics, University of York, York YO10 5DD, United Kingdom 7 School of Chemical and Process Engineering and School of Physics and Astronomy,利兹大学,利兹LS2 9JT,英国伦敦大学伦敦大学学院,伦敦Torrington Place,WC1E 7JE,英国2号2光电研究中心,南安普敦大学,南安普敦大学,SO17 1BJ,英国3英国3,英国3号电子工程系,贝斯校区,Swansea,Sawansea,Savosea,Sa1 and sa1 8ne of Interver,sa1 and Introl,Sa1 8ne of Key,Key,Key of Key of Key kekij Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China 5 SuperSTEM, SciTech Daresbury Science and Innovation Campus, Block J, Keckwick Lane, Daresbury WA4 4AD, United Kingdom 6 York NanoCentre & Department of Physics, University of York, York YO10 5DD, United Kingdom 7 School of Chemical and Process Engineering and School of Physics and Astronomy,利兹大学,利兹LS2 9JT,英国
metasurfaces为在薄膜光学元件的领域中操纵光特性提供了一个灵活的框架。特别是,可以通过使用薄相板有效地控制光的极化。本研究旨在为这些设备引入替代优化框架。该框架用于开发针对天文学高对比度成像应用的两种涡旋相口罩(VPM)。计算智能技术被利用以优化这些设备的几何特征。较大的设计空间和计算限制需要使用替代模型,例如部分最小二乘Kriging,径向基函数或神经网络。但是,我们证明了这些方法在建模VPM的性能时的不足。为了解决这些方法的缺点,提出了使用深神经网络作为高度准确且有效的替代模型的数据效率进化优化设置。本研究中的优化过程采用了强大的粒子群进化优化方案,该方案在光子设备的显式几何参数上运行。通过这种方法,为两个候选人开发了最佳设计。在最复杂的情况下,进化优化可以优化设计原本不切实际的设计(需要太多的模拟)。在这两种情况下,替代模型都提高了程序的可靠性和效率,与常规优化技术相比,所需的模拟数量最多可将所需数量的仿真数量减少高达75%。
“强大的品牌可以彰显我们与竞争对手的不同之处,而且令人难忘。强大的俄亥俄州品牌可以统一关键信息并促进全州的经济活动,因为每次看到或听到它都会留下印记。这对于俄亥俄州 470 亿美元的旅游经济尤其重要,因为我们与其他州竞争以吸引游客的注意力和消费能力。‘俄亥俄州,万物之心’在满足有效品牌的所有条件方面有着良好的记录。”
本文由马歇尔数字学者免费提供给您。Marshall Digital Scholar的授权管理员已接受它将其纳入这些论文,论文和capstones。有关更多信息,请联系zhangj@marshall.edu,beachgr@marshall.edu。
抽象的抗感染和抗癌药物有一个严重的问题,即随着时间的流逝,其影响会导致临床过时。Strathclyde大学的研究发现了基于对DNA的次要凹槽粘合剂的抗感染药物平台,这些平台对其靶基体(细菌,真菌和寄生虫)的耐药性发展具有极大的弹性。该特性与以上一个以上的分子靶标的Strathclyde小凹槽(S-MGB)作用的事实有关。其中一种化合物已成功完成了IIA期临床试验,用于治疗梭状芽胞杆菌艰难梭菌感染。其他几种化合物在体外表现出了许多癌细胞系的活性,在肺癌的小鼠模型中表明体内活性。本文将这些发现置于先前将次要凹槽粘合剂作为抗癌剂的研究的背景下,并考虑了在反感染应用中成功证明的多静电气的好处,可以将其转化为抗癌应用程序。