卵子研究杂志。20,编号2,2024年3月 - 第2页。 221-232关于石墨烯氧化石墨烯的振动和结构变化的拉曼光谱研究:激光和时间的影响S. Yadav A,S。K. Padhi B,Ch。 Srinivasulu C,K。L. Naidu A,* A GSS,GSS,Gitam(被视为大学)的物理学系,Visakhapatnam,530045,印度B物理系,都灵大学,Via。 P. Giuria 1-710125都灵,意大利。 C HYDERABAD大学海得拉巴大学500046的物理学学院。 氧化石墨烯及其纳米复合材料在各种应用中起着至关重要的作用。 激光辐照是一种低成本技术,可调整石墨烯氧化物材料,并且需要对激光 - 晶烯氧化物相互作用期间对振动模式和结构变化进行详细研究。 在不同的激光功率和不同的暴露时间持续时间(通过拉曼光谱)分别在本研究中感兴趣的是在不同的激光功率和不同的暴露时间持续时间以不同的激光功率和不同的暴露时间持续时间的变化。 氧化石墨烯(GO)通过改进的悍马方法合成,并以X射线衍射(XRD),热重分析(TGA),现场发射扫描电子显微镜(FE- SEM),能量分散X射线分析(EDX),UV-VIS-NIR和RAMAN和RAMAN和RAMAN和RAMAN EXPECTRROSCOPY进行合成。 GO的一阶拉曼频谱分别由1350和1584 cm -1的宽D和G峰组成,大约在2700 cm -1左右。 使用Lorentzian函数,将一阶频带变形为五个模式,将第二阶带分为四个模式。 这些模式的峰位置和FWHM经历了指示性变化。2,2024年3月 - 第2页。 221-232关于石墨烯氧化石墨烯的振动和结构变化的拉曼光谱研究:激光和时间的影响S. Yadav A,S。K. Padhi B,Ch。Srinivasulu C,K。L. Naidu A,* A GSS,GSS,Gitam(被视为大学)的物理学系,Visakhapatnam,530045,印度B物理系,都灵大学,Via。P. Giuria 1-710125都灵,意大利。C HYDERABAD大学海得拉巴大学500046的物理学学院。 氧化石墨烯及其纳米复合材料在各种应用中起着至关重要的作用。 激光辐照是一种低成本技术,可调整石墨烯氧化物材料,并且需要对激光 - 晶烯氧化物相互作用期间对振动模式和结构变化进行详细研究。 在不同的激光功率和不同的暴露时间持续时间(通过拉曼光谱)分别在本研究中感兴趣的是在不同的激光功率和不同的暴露时间持续时间以不同的激光功率和不同的暴露时间持续时间的变化。 氧化石墨烯(GO)通过改进的悍马方法合成,并以X射线衍射(XRD),热重分析(TGA),现场发射扫描电子显微镜(FE- SEM),能量分散X射线分析(EDX),UV-VIS-NIR和RAMAN和RAMAN和RAMAN和RAMAN EXPECTRROSCOPY进行合成。 GO的一阶拉曼频谱分别由1350和1584 cm -1的宽D和G峰组成,大约在2700 cm -1左右。 使用Lorentzian函数,将一阶频带变形为五个模式,将第二阶带分为四个模式。 这些模式的峰位置和FWHM经历了指示性变化。C HYDERABAD大学海得拉巴大学500046的物理学学院。氧化石墨烯及其纳米复合材料在各种应用中起着至关重要的作用。激光辐照是一种低成本技术,可调整石墨烯氧化物材料,并且需要对激光 - 晶烯氧化物相互作用期间对振动模式和结构变化进行详细研究。在不同的激光功率和不同的暴露时间持续时间(通过拉曼光谱)分别在本研究中感兴趣的是在不同的激光功率和不同的暴露时间持续时间以不同的激光功率和不同的暴露时间持续时间的变化。氧化石墨烯(GO)通过改进的悍马方法合成,并以X射线衍射(XRD),热重分析(TGA),现场发射扫描电子显微镜(FE- SEM),能量分散X射线分析(EDX),UV-VIS-NIR和RAMAN和RAMAN和RAMAN和RAMAN EXPECTRROSCOPY进行合成。GO的一阶拉曼频谱分别由1350和1584 cm -1的宽D和G峰组成,大约在2700 cm -1左右。使用Lorentzian函数,将一阶频带变形为五个模式,将第二阶带分为四个模式。这些模式的峰位置和FWHM经历了指示性变化。在不同暴露时间持续时间内具有激光功率的缺陷模式的强度比和(𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖' - 𝐺𝐺𝐺𝐺)的变化分别表明边缘缺陷和氧化石墨烯的降低。这些结果扩大了对不同时间持续时间激光功率对氧化石墨烯特征的影响的理解。我们的研究提供了有关激光互动的定量信息。(2024年1月21日收到; 2024年4月8日接受)关键词:氧化石墨烯,缺陷,激光功率,拉曼光谱,平面内晶体大小(L a)1。简介氧化石墨烯是一种二维官能化透明岩片,含有连接在边缘和基础平面的功能分子的氧。氧化石墨烯已被广泛用于电化学超级电容器[1],生物医学[2],传感器[3],现场效应晶体管(FET)[4],燃料电池[5],锂电池[6],Polymer nanocomososes [7]。不同的方法,包括化学,热,水热,电化学和光化学还原,以减少官能团以实现石墨烯样结构,众所周知的石墨烯氧化石墨烯。通过去除不稳定的C = O键[8] Raman Spectroscoppy Analysis是一种非损害工具,可以从频谱参数中获得有关缺陷和疾病的知识,从而通过去除不稳定的C = O键来精确调整和量身定制缺陷[8],对缺陷进行了精确调整和剪裁,从而,对缺陷进行了精确调整和剪裁。通常,G波段是石墨烯片的特征,而D波段随着石墨烯片中的缺陷和疾病的增加而演变。通过对X射线衍射模式或样品的X射线光电光谱进行相应分析来量化拉曼光谱的变化来开发结构光谱相关性[9-11]。氧化石墨烯的拉曼光谱包含一阶带,其特征峰约为1350(D波段)和1580 cm -1(g波段),而在2700 cm -1左右的宽二阶频带。
通信地址:Christina Yau 博士,加利福尼亚大学旧金山分校外科系,美国加利福尼亚州旧金山 94143 HoiSze.Yau@ucsf.edu。贡献者所有作者都已审阅数据分析、审阅或修改了手稿的知识内容、批准了最终发布的版本并同意对工作的所有方面负责。CY、M-OK、MO、MvdN 和 SS 可以访问原始数据。LJE 是手稿的担保人。CY、LJE 和 WFS 构思并监督了这项研究。MO、MvdN、SS、DdC、A-SH、TGS、MdM-M、TH、RG、EP、JST、AG、PH、LM、FF、KS 和 AMDeM 整理数据。MO 和 CY 访问并核实了数据。CY 和 M-OK 正式分析并确认了数据。 DdC、A-SH、EP、JST、AG、PH、LM、FF、KC 和 CY 参与了调查。M-OK 和 WFS 开发了方法和软件。MO、MvdN、JaW 和 SS 提供了行政支持。DdC、A-SH、ML、FR、GSS、TGS、MvS、JeW、MM、MdM-M、SL-T、JCB、MPG、TH、RG、VV、SBE、JEA、JMSB、CC、JD、HE、LaH、LoH、S-JS、DC、AKG、KS、PS、AMDeM、LP、LJvV、LJE 和 WFS 提供了资源。CY 负责数据可视化。CY 和 MO 撰写了初稿。所有作者都拥有所有汇总或分析数据的完全访问权限,并对提交出版的决定负有最终责任。*贡献相同
通信地址:Christina Yau 博士,加利福尼亚大学旧金山分校外科系,美国加利福尼亚州旧金山 94143 HoiSze.Yau@ucsf.edu。贡献者所有作者都已审阅数据分析、审阅或修改了手稿的知识内容、批准了最终发布的版本并同意对工作的所有方面负责。CY、M-OK、MO、MvdN 和 SS 可以访问原始数据。LJE 是手稿的担保人。CY、LJE 和 WFS 构思并监督了这项研究。MO、MvdN、SS、DdC、A-SH、TGS、MdM-M、TH、RG、EP、JST、AG、PH、LM、FF、KS 和 AMDeM 整理数据。MO 和 CY 访问并核实了数据。CY 和 M-OK 正式分析并确认了数据。 DdC、A-SH、EP、JST、AG、PH、LM、FF、KC 和 CY 参与了调查。M-OK 和 WFS 开发了方法和软件。MO、MvdN、JaW 和 SS 提供了行政支持。DdC、A-SH、ML、FR、GSS、TGS、MvS、JeW、MM、MdM-M、SL-T、JCB、MPG、TH、RG、VV、SBE、JEA、JMSB、CC、JD、HE、LaH、LoH、S-JS、DC、AKG、KS、PS、AMDeM、LP、LJvV、LJE 和 WFS 提供了资源。CY 负责数据可视化。CY 和 MO 撰写了初稿。所有作者都拥有所有汇总或分析数据的完全访问权限,并对提交出版的决定负有最终责任。*贡献相同
课程开始和结束日期 2024 年 9 月 23 日 - 2025 年 1 月 3 日 期末考试日期 2025 年 1 月 4 日至 19 日 补充考试日期 2025 年 1 月 25 日至 2 月 2 日 新(初始)注册开始和结束日期 适应大学生活周 2024 年 9 月 18 日至 20 日 学生注册续订开始和结束日期 2024 年 9 月 16 日至 22 日 学费/材料/学费付款日期 2024 年 9 月 16 日至 22 日 学生注册续订开始和结束日期(针对开放教育课程) 2024 年 9 月 16 日至 30 日 学费/材料/学费付款日期(针对开放教育课程) 2024 年 9 月 16 日至 30 日 顾问批准 2024 年 9 月 16 日至 23 日 部门负责人批准 2024 年 9 月 24 日与院系顾问进行面对面会议的日期 2024 年 9 月 25-26 日 学生增减课程和请假开始-结束日期 2024 年 9 月 25-29 日 顾问批准 2024 年 9 月 25-30 日 部门负责人批准 2024 年 10 月 1 日 5(ı),GSS,Univ。非区域课程期中考试日期:2024 年 11 月 18 日至 24 日
1个神经生物学,生物化学与生物物理学,特拉维夫大学生命科学学院,特拉维夫69978,以色列2 Sagol School of Neuroscience,特拉维夫大学,P.O。框39040,特拉维夫6997801,以色列3部,护理,社会福利与健康科学学院,以色列海法大学,海法大学 *通信:hadarro1@gmail.com;抽象的每日压力源会引起影响健康,认知和行为的生理和心理反应。 尽管进行了广泛的研究,尽管腕上磨损的设备有可能通过远程数据收集来解决这一差距,尽管进行了广泛的研究,但在自然环境中的应力反应仍然具有挑战性。 Garmin Fitness Tracker提供的压力得分很大程度上基于HRV,必须在研究中使用之前对其进行验证。 这项研究旨在评估Garmin Vivosmart 4对HR和HRV的应力得分,这些HR和HRV来自Polar H10胸带得出的ECG记录。 进行了29名参与者的试点研究,然后进行了功率计算和主要研究的预注册,其中包括60名参与者。 在实验室会议上,同时从两个设备中收集了数据,并进行了精神压力诱导的任务。 Garmin的应力得分,平均HR,SD2/SD1和HF功率在压力和休息条件之间表现出显着差异。 此外,Garmin的压力得分与HR,RMSSD和SD2/SD1显着相关。 我们的发现表明,对精神压力的生理反应受到性和补品HRV的影响。,护理,社会福利与健康科学学院,以色列海法大学,海法大学 *通信:hadarro1@gmail.com;抽象的每日压力源会引起影响健康,认知和行为的生理和心理反应。尽管进行了广泛的研究,尽管腕上磨损的设备有可能通过远程数据收集来解决这一差距,尽管进行了广泛的研究,但在自然环境中的应力反应仍然具有挑战性。 Garmin Fitness Tracker提供的压力得分很大程度上基于HRV,必须在研究中使用之前对其进行验证。 这项研究旨在评估Garmin Vivosmart 4对HR和HRV的应力得分,这些HR和HRV来自Polar H10胸带得出的ECG记录。 进行了29名参与者的试点研究,然后进行了功率计算和主要研究的预注册,其中包括60名参与者。 在实验室会议上,同时从两个设备中收集了数据,并进行了精神压力诱导的任务。 Garmin的应力得分,平均HR,SD2/SD1和HF功率在压力和休息条件之间表现出显着差异。 此外,Garmin的压力得分与HR,RMSSD和SD2/SD1显着相关。 我们的发现表明,对精神压力的生理反应受到性和补品HRV的影响。尽管进行了广泛的研究,但在自然环境中的应力反应仍然具有挑战性。Garmin Fitness Tracker提供的压力得分很大程度上基于HRV,必须在研究中使用之前对其进行验证。这项研究旨在评估Garmin Vivosmart 4对HR和HRV的应力得分,这些HR和HRV来自Polar H10胸带得出的ECG记录。进行了29名参与者的试点研究,然后进行了功率计算和主要研究的预注册,其中包括60名参与者。在实验室会议上,同时从两个设备中收集了数据,并进行了精神压力诱导的任务。Garmin的应力得分,平均HR,SD2/SD1和HF功率在压力和休息条件之间表现出显着差异。此外,Garmin的压力得分与HR,RMSSD和SD2/SD1显着相关。我们的发现表明,对精神压力的生理反应受到性和补品HRV的影响。研究表明,GSS表明了精神压力,其可及性和无创性有望在各种研究领域中广泛使用。
在Zantoxylum属中发现的几种生物碱已显示出显着的抗癌活性。然而,以前尚未报道乙氧基氯抗菌(ETH)的抗肿瘤作用。细胞活力,菌落形成,凋亡和细胞周期分析,细胞内和活性氧(ROS),线粒体膜电位(MMP)对SW480细胞的ETH水平。皮下移植的SW480细胞模型用于确定ETH对体内肿瘤生长的影响。炎症水平,血管生成因子,病理观察,定量反向转录PCR(QRT-PCR),定量蛋白质组学,代谢物概况和蛋白质印迹。它发现ETH在体外显着抑制了SW480和HT29细胞的增殖,对SW480细胞的抑制作用更强。因此,随后的研究集中在SW480细胞上。在体外,我们观察到ETH在G0/G1期停滞了细胞周期,MMP水平降低,细胞ROS水平升高和诱导的线粒体凋亡。体外,ETH显着抑制了肿瘤的增殖和转移,并调节血清中血管生成和炎症因子的分子水平,以及肿瘤组织中的凋亡蛋白。血清蛋白质组学表明,差异蛋白主要参与PI3K/ AKT/ MTOR途径,包括层粘连蛋白β1(LAMB1)和I型胶原蛋白(COL1A1)。代谢组学表明,在ETH干预后,显然,由PI3K/AKT/MTOR途径调节的许多异常水平的代谢产物显然会逆转正常水平。两组之间的相关性分析表明,PI3K/AKT途径中的不同蛋白,尤其是乳酸脱氢酶B(LDHB)和谷胱甘肽合成酶(GSS)可以与大多数不同的代谢物相互作用。总而言之,ETH通过抑制PI3K/AKT/MTOR途径的激活来发挥抗肿瘤作用,从而激活线粒体凋亡。ETH在未来缓解结肠癌患者的药物开发中可能会考虑。
这是北大西洋公约组织 (NATO) 下属的北约通信和信息局 (NCIA) 的一个职位。成立 NCIA 的目的是最大限度地满足部分或所有北约国家在能力交付和服务提供方面的集体需求,这些领域涉及咨询、指挥和控制以及通信、信息和网络防御功能,从而促进情报、监视、侦察、目标获取功能及其相关信息交换的整合。北约网络安全中心 (NCSC) 负责规划和执行网络安全的所有生命周期管理活动。在履行这一职责时,NCSC 提供专业的网络安全相关服务,涵盖科学、技术、采购、运营、维护和持续支持等各个方面,贯穿北约通信和信息系统 (CIS) 的整个生命周期。NCSC 确保北约在 C4ISR 的背景下安全开展联盟的运营和业务。 NCSC 为 NCI 机构客户和用户以及机构的所有其他部门提供网络安全服务;这包括所有服务线、项目办公室、CIS 支持单位/部门和机构运营中心。NCSC 负责在以下专业安全领域提供广泛的服务:CIS 安全、网络防御、信息保障、计算机安全和通信安全。在履行其职责时,NCSC 为网络安全相关政策和战略的制定和实施提供支持,并为所有北约 CIS 提供生命周期安全风险管理服务。NCSC 在网络安全新功能和创新的开发方面处于领先地位。NCSC 整合并提供专业服务,以防止、检测、应对和恢复网络安全事件。基础设施部门在密码学、身份管理、技术服务(支持 CS 运营)和 CIS 保护等特定领域提供一套支持服务。这些服务包括北约加密解决方案的集成和验证、加密设备和密钥的生命周期管理、北约范围内在线和离线加密设备的运营和后勤支持、身份管理服务、网关服务、专门的企业范围 CS 基础设施(包括 NCSC 元素)、北约企业范围端点安全软件的应用、实施、配置和管理。网关安全服务 (GSS) 部门负责并负责部署在北约网络内部和边缘的边界保护组件的所有生命周期方面,以保护关键的北约信息,同时允许北约工作人员安全工作和处理他们的信息。
欢迎来到这场由新英格兰音乐学院和冈瑟·舒勒协会联合制作的冈瑟·舒勒遗产音乐会。新英格兰音乐学院和冈瑟·舒勒协会每年都会举办这场音乐会,以弘扬新英格兰音乐学院历史上最具变革性的人物冈瑟·舒勒的遗产:前新英格兰音乐学院主席、作曲家、指挥家、作家和著名号手。今晚的音乐会颂扬了对好奇心和探索的热情,颂扬了冈瑟·舒勒最看重的品质;这些品质是他在领导新英格兰音乐学院期间灌输给新英格兰音乐学院的。今年的节目是由新英格兰音乐学院长期教员、舒勒协会联合创始人肯尼斯·拉德诺夫斯基构思和执行的。我们都非常感谢他为这个非凡的夜晚所做的一切。查尔斯·佩尔茨 冈瑟·舒勒协会会长 冈瑟·舒勒协会由冈瑟·舒勒的同事创建,旨在延续和弘扬这位全能音乐家的遗产:作曲家、作家、指挥家、号手、教育家和音乐梦想家。该协会于 2017 年在纽约州注册成立,并在美国国税局注册为 501(C) 3 免税非营利性公司。 以下列出的项目代表了协会将从事的一些多样化和重要工作: - 建立口述和视频历史 - 创建供学者和表演者使用的原始文本版本 - 编辑和分发档案录音 - 宣传和支持关注舒勒及其音乐的书籍和文章 - 提供宣传音乐会和舒勒活动的平台 我们最有价值的工作将是创建一个来自社会各个领域的舒勒倡导者社区 - 音乐家、作家、艺术家 - 他们希望为这位重要艺术家的活生生的遗产做出贡献。要了解有关协会的更多信息,请访问我们的网站:Guntherschullersociety.org 或联系:GSS 主席 Charles Peltz,邮箱:Charles.peltz@necmusic.edu Gunther Schuller 于 1925 年 11 月 22 日出生于纽约。他的职业音乐生涯始于演奏法国号,十几岁时在美国芭蕾舞剧院演出,在辛辛那提交响乐团(1943-1945 年)担任首席圆号手,并在大都会歌剧院管弦乐团(1945-1959 年)演出。他曾与 20 世纪的传奇大师合作演出,包括托斯卡尼尼、斯托科夫斯基、沃尔特、雷纳、塞尔、米特罗普洛斯和多拉蒂。舒勒还在 Miles Davis 的《Birth of the Cool》和《Porgy and Bess》录音中演奏法国号,并为爵士乐大师 John Lewis、Dizzy Gillespie、Charles Mingus、JJ Johnson、George Russell 和 Joe Lovano 等人作曲和/或指挥。
缩写:5-FU,5-氟尿嘧啶;AA-CoA,花生四烯酸辅酶 A;ABCC1,ATP 结合盒,C 亚家族(CFTR/MRP),成员 1;ACC,无定形碳酸钙;ACLS4,酰基辅酶 A 合成酶家族 4;AdA-CoA,肾上腺酸辅酶 A;ALDH,醛脱氢酶;AML,急性髓细胞白血病;APC,抗原处理细胞;ARE,抗氧化反应元件;ART,青蒿素;BAX,BCL-2 相关 X 蛋白;BCL-2,B 细胞淋巴瘤 2;BTIC,脑肿瘤起始细胞;CBR,临床受益率;CLL,慢性淋巴细胞白血病;CNSI-Fe(II),碳纳米颗粒负载铁;CQ,氯喹;CRPC,去势抵抗性前列腺癌; CSC,癌症干细胞;CTL,细胞毒性 T 淋巴细胞;CuET,二乙基二硫代氨基甲酸铜 (II);DAMP,损伤相关分子模式;DFO,去铁胺;DHA,双氢青蒿素;DLAT,丙酮酸二氢硫酰赖氨酸残基乙酰转移酶成分;DMT1,二价金属转运蛋白 1;DOX,阿霉素;DRD2,多巴胺 D2 受体;DSF,双硫仑;EGFR,表皮生长因子受体;EMT,上皮-间质转化;ER,内质网;ETO,依托泊苷;FDX1,铁氧还蛋白 1;FER-1,铁抑制蛋白 1;FMN,基于框架的纳米剂;FPN1,铁转运蛋白 1;FTH1,铁蛋白重链 1; FTL1,铁蛋白轻链 1;GPX4,谷胱甘肽过氧化物酶 4;GSH,谷胱甘肽;GSS,谷胱甘肽合成酶;H 2 O 2,过氧化氢;HNC,头颈癌;HO-1,血红素加氧酶-1;ICD,免疫细胞死亡;ICIs,免疫检查点抑制剂;IDH1,异柠檬酸脱氢酶 1;IFN-γ,干扰素-γ;IREB2,铁反应元件结合蛋白 2;IREs,铁反应元件;IRP-2,铁调节蛋白 2;IRPs,铁调节蛋白;JAK,Janus 酪氨酸激酶;KEAP1,kelch 样 ECH 相关蛋白 1;KRAS,Kirsten 大鼠肉瘤病毒致癌基因同源物;LA,硫辛酸; LC3II,微管相关蛋白 1 轻链 3α;LDH,乳酸脱氢酶;LiMOFs,锂基金属有机骨架;LIPRO-1,利普司他丁 1;LOX,脂氧合酶;LPCAT3,溶血磷脂酰胆碱酰基转移酶 3;MDA,丙二醛;MFC-Gem,载吉西他滨的碳质纳米粒子;MGMT,甲基鸟嘌呤甲基转移酶;MMNPs,磁性介孔二氧化硅纳米粒子;MMP-2,金属蛋白酶-2;MnFe 2 O 4 ,锰铁氧体;mRNAs,信使 RNA;NEPC,神经内分泌前列腺癌;NF- κ B,活化 B 细胞的核因子 κ 轻链增强子;NFS1,半胱氨酸脱硫酶;NK,自然杀伤细胞; NOX,NADPH 氧化酶 1;NRF2,核因子红细胞 2 相关因子 2;NSCLC,非小细胞肺癌;OC1,耳蜗毛细胞;OS,总生存率;P62,隔离小体 1;PET,正电子发射断层扫描;P-GP,P-糖蛋白;PCC,持久癌细胞;PCN(Fe) MOFs,Fe 3 + 卟啉金属有机骨架上的 PEG;PD-L1,程序性死亡配体 1;PDAC,胰腺导管腺癌;PEG,聚乙二醇;PGE2,前列腺素 E2;PGRMC1,孕酮受体膜成分 1;PHPM,ROS 敏感聚合物;PTX,紫杉醇;PUFA,多不饱和脂肪酸;PUFA-OOH,磷脂多不饱和脂肪酸过氧化物;RIPK-1/2/3,受体相互作用丝氨酸/苏氨酸蛋白激酶 1/2/3;ROS,活性氧;RR,反应率;siRNA,小干扰 RNA;siSLC7A11,SLC7A11 siRNA;SLC3A2,溶质载体家族 3 成员 2;SLC40A1,溶质载体家族 40 成员 1;SLC7A11,溶质载体家族 7 成员 11;STAT1,信号转导和转录激活因子 1;TAM,肿瘤相关巨噬细胞;TCA,三羧酸循环;TFR,转铁蛋白受体;TME,肿瘤微环境; TMZ,替莫唑胺;TP53,细胞肿瘤抗原 p53;TRADD,肿瘤坏死因子受体 1 型相关死亡结构域蛋白;TTP,进展时间;US FDA,美国食品药品管理局;UTRs,非翻译区;VDAC,电压依赖性阴离子通道;xCT,谷氨酸-胱氨酸反向转运蛋白;Z-VAD-FMK,羧苄氧缬氨酰丙氨酰天冬氨酰-[O-甲基]-氟甲基酮;γ-GCS,γ-谷氨酰半胱氨酸合成酶。 * 通讯作者。电子邮箱地址:mateusz.kciuk@biol.uni.lodz.pl (M. Kciuk)。